Let R be a split extension of an artin algebra A by a nilpotent bimodule , and let M be an indecomposable non-projective A-module. We show that the almost split sequences ending with M in mod A and mod R coincide if and only if = 0 and .
@article{bwmeta1.element.bwnjournal-article-cmv81i1p21bwm, author = {Ibrahim Assem and Dan Zacharia}, title = {Full embeddings of almost split sequences over split-by-nilpotent extensions}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {21-31}, zbl = {0942.16022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p21bwm} }
Assem, Ibrahim; Zacharia, Dan. Full embeddings of almost split sequences over split-by-nilpotent extensions. Colloquium Mathematicae, Tome 79 (1999) pp. 21-31. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p21bwm/
[000] [1] I. Assem and F. U. Coelho, Glueings of tilted algebras, J. Pure Appl. Algebra 96 (1994), 225-243. | Zbl 0821.16015
[001] [2] I. Assem and N. Marmaridis, Tilting modules over split-by-nilpotent extensions, Comm. Algebra 26 (1998), 1547-1555. | Zbl 0915.16007
[002] [3] M. Auslander and I. Reiten, Representation theory of artin algebras V, ibid. 5 (1997), 519-554.
[003] [4] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Univ. Press, 1995. | Zbl 0834.16001
[004] [5] K. R. Fuller, *-Modules over ring extensions, Comm. Algebra 25 (1997), 2839-2860. | Zbl 0885.16019
[005] [6] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1998. | Zbl 0635.16017
[006] [7] M. Hoshino, Trivial extensions of tilted algebras, Comm. Algebra 10 (1982), 1965-1999. | Zbl 0494.16014
[007] [8] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364. | Zbl 0488.16021
[008] [9] N. Marmaridis, On extensions of abelian categories with applications to ring theory, J. Algebra 156 (1993), 50-64. | Zbl 0796.18007
[009] [10] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
[010] [11] A. Skowroński, Minimal representation-infinite artin algebras, Math. Proc. Cambridge Philos. Soc. 116 (1994), 229-243. | Zbl 0822.16010
[011] [12] H. Tachikawa, Representations of trivial extensions of hereditary algebras, in: Lecture Notes in Math. 832, Springer, 1980, 579-599.
[012] [13] K. Yamagata, Extensions over hereditary artinian rings with self-dualities I, J. Algebra 73 (1981), 386-433. | Zbl 0471.16022