The collection of all sets of measure zero for a finitely additive, group-valued measure is studied and characterised from a combinatorial viewpoint.
@article{bwmeta1.element.bwnjournal-article-cmv81i1p1bwm, author = {K. Bhaskara Rao and R. Shortt}, title = {On systems of null sets}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {1-4}, zbl = {0937.28011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p1bwm} }
Bhaskara Rao, K.; Shortt, R. On systems of null sets. Colloquium Mathematicae, Tome 79 (1999) pp. 1-4. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p1bwm/
[000] [1] K. P. S. Bhaskara Rao and R. M. Shortt, Group-valued charges: common extensions and the infinite Chinese remainder property, Proc. Amer. Math. Soc. 113 (1991), 965-972. | Zbl 0743.28004
[001] [2] R. Göbel and R. M. Shortt, Algebraic ramifications of the common extension problem for group-valued measures, Fund. Math. 146 (1994), 1-20. | Zbl 0851.28007