Quasitilted algebras have been introduced as a proper generalization of tilted algebras. In an earlier article we determined necessary conditions for one-point extensions of decomposable finite-dimensional hereditary algebras to be quasitilted and not tilted. In this article we study algebras satisfying these necessary conditions in order to investigate to what extent the conditions are sufficient.
@article{bwmeta1.element.bwnjournal-article-cmv81i1p141bwm, author = {Dieter Happel and Inger Slung\aa rd}, title = {On quasitilted algebras which are one-point extensions of hereditary algebras}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {141-152}, zbl = {0948.16010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p141bwm} }
Happel, Dieter; Slungård, Inger. On quasitilted algebras which are one-point extensions of hereditary algebras. Colloquium Mathematicae, Tome 79 (1999) pp. 141-152. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p141bwm/
[000] [ARS] M. Auslander, I. Reiten and S. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, Cambridge, 1995.
[001] [Ha] D. Happel, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, Cambridge-New York, 1988. | Zbl 0635.16017
[002] [HR1] D. Happel and I. Reiten, Directing objects in hereditary categories, in: Contemp. Math. 229, Amer. Math. Soc., Proviedence, RI, 1998, 169-179. | Zbl 0923.16012
[003] [HR2] D. Happel and I. Reiten, Hereditary categories with tilting object, Math. Z., to appear.
[004] [HRS] D. Happel, I. Reiten and S. O. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996). | Zbl 0849.16011
[005] [HS] D. Happel and I. H. Slungård, One-point extensions of hereditary algebras, in: Algebras and Modules, II (Geiranger, 1996), CMS Conf. Proc. 24, Amer. Math. Soc., Providence, RI, 1998, 285-291.
[006] [Hü] T. Hübner, Exzeptionelle Vektorbündel und Reflektionen an Kippgarben über projektiven gewichteten Kurven, dissertation, Universität-GH Paderborn, 1996.
[007] [LM] H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, in: Representation Theory of Algebras (Cocoyoc, 1994), CMS Conf. Proc. 18, Amer. Math. Soc., Providence, RI, 1996, 455-473. | Zbl 0863.16013
[008] [LP] H. Lenzing and J. A. de la Pe na, Wild canonical algebras, Math. Z. 224 (1997), 403-425.
[009] [LS] H. Lenzing and A. Skowroński, Quasitilted algebras of cannonical type, Colloq. Math. 71 (1996), 161-181.
[010] [Ri] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin-New York, 1984.
[011] [Sk] A. Skowroński, Tame quasitilted algebras, J. Algebra 203 (1998), 470-490. | Zbl 0908.16013