On quasitilted algebras which are one-point extensions of hereditary algebras
Happel, Dieter ; Slungård, Inger
Colloquium Mathematicae, Tome 79 (1999), p. 141-152 / Harvested from The Polish Digital Mathematics Library

Quasitilted algebras have been introduced as a proper generalization of tilted algebras. In an earlier article we determined necessary conditions for one-point extensions of decomposable finite-dimensional hereditary algebras to be quasitilted and not tilted. In this article we study algebras satisfying these necessary conditions in order to investigate to what extent the conditions are sufficient.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210724
@article{bwmeta1.element.bwnjournal-article-cmv81i1p141bwm,
     author = {Dieter Happel and Inger Slung\aa rd},
     title = {On quasitilted algebras which are one-point extensions of hereditary algebras},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {141-152},
     zbl = {0948.16010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p141bwm}
}
Happel, Dieter; Slungård, Inger. On quasitilted algebras which are one-point extensions of hereditary algebras. Colloquium Mathematicae, Tome 79 (1999) pp. 141-152. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p141bwm/

[000] [ARS] M. Auslander, I. Reiten and S. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, Cambridge, 1995.

[001] [Ha] D. Happel, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, Cambridge-New York, 1988. | Zbl 0635.16017

[002] [HR1] D. Happel and I. Reiten, Directing objects in hereditary categories, in: Contemp. Math. 229, Amer. Math. Soc., Proviedence, RI, 1998, 169-179. | Zbl 0923.16012

[003] [HR2] D. Happel and I. Reiten, Hereditary categories with tilting object, Math. Z., to appear.

[004] [HRS] D. Happel, I. Reiten and S. O. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996). | Zbl 0849.16011

[005] [HS] D. Happel and I. H. Slungård, One-point extensions of hereditary algebras, in: Algebras and Modules, II (Geiranger, 1996), CMS Conf. Proc. 24, Amer. Math. Soc., Providence, RI, 1998, 285-291.

[006] [Hü] T. Hübner, Exzeptionelle Vektorbündel und Reflektionen an Kippgarben über projektiven gewichteten Kurven, dissertation, Universität-GH Paderborn, 1996.

[007] [LM] H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, in: Representation Theory of Algebras (Cocoyoc, 1994), CMS Conf. Proc. 18, Amer. Math. Soc., Providence, RI, 1996, 455-473. | Zbl 0863.16013

[008] [LP] H. Lenzing and J. A. de la Pe na, Wild canonical algebras, Math. Z. 224 (1997), 403-425.

[009] [LS] H. Lenzing and A. Skowroński, Quasitilted algebras of cannonical type, Colloq. Math. 71 (1996), 161-181.

[010] [Ri] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin-New York, 1984.

[011] [Sk] A. Skowroński, Tame quasitilted algebras, J. Algebra 203 (1998), 470-490. | Zbl 0908.16013