Curvature homogeneity of affine connections on two-dimensional manifolds
Kowalski, Oldřich ; Opozda, Barbara ; Vlášek, Zdeněk
Colloquium Mathematicae, Tome 79 (1999), p. 123-139 / Harvested from The Polish Digital Mathematics Library

Curvature homogeneity of (torsion-free) affine connections on manifolds is an adaptation of a concept introduced by I. M. Singer. We analyze completely the relationship between curvature homogeneity of higher order and local homogeneity on two-dimensional manifolds.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210723
@article{bwmeta1.element.bwnjournal-article-cmv81i1p123bwm,
     author = {Old\v rich Kowalski and Barbara Opozda and Zden\v ek Vl\'a\v sek},
     title = {Curvature homogeneity of affine connections on two-dimensional manifolds},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {123-139},
     zbl = {0942.53019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p123bwm}
}
Kowalski, Oldřich; Opozda, Barbara; Vlášek, Zdeněk. Curvature homogeneity of affine connections on two-dimensional manifolds. Colloquium Mathematicae, Tome 79 (1999) pp. 123-139. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p123bwm/

[000] [1] E. Boeckx, O. Kowalski and L. Vanhecke, Riemannian Manifolds of Conullity Two, World Sci., 1996. | Zbl 0904.53006

[001] [2] P. Bueken and L. Vanhecke, Examples of curvature homogeneous Lorentz metrics, Classical Quantum Gravity 14 (1997), L93-L96. | Zbl 0882.53036

[002] [3] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry I, Interscience, New York, 1963. | Zbl 0119.37502

[003] [4] B. Opozda, On curvature homogeneous and locally homogeneous affine connections, Proc. Amer. Math. Soc. 124 (1996), 1889-1893. | Zbl 0864.53013

[004] [5] B. Opozda, Affine versions of Singer's Theorem on locally homogeneous spaces, Ann. Global Anal. Geom. 15 (1997), 187-199. | Zbl 0881.53010

[005] [6] I. M. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697. | Zbl 0171.42503