Curvature homogeneity of (torsion-free) affine connections on manifolds is an adaptation of a concept introduced by I. M. Singer. We analyze completely the relationship between curvature homogeneity of higher order and local homogeneity on two-dimensional manifolds.
@article{bwmeta1.element.bwnjournal-article-cmv81i1p123bwm, author = {Old\v rich Kowalski and Barbara Opozda and Zden\v ek Vl\'a\v sek}, title = {Curvature homogeneity of affine connections on two-dimensional manifolds}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {123-139}, zbl = {0942.53019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p123bwm} }
Kowalski, Oldřich; Opozda, Barbara; Vlášek, Zdeněk. Curvature homogeneity of affine connections on two-dimensional manifolds. Colloquium Mathematicae, Tome 79 (1999) pp. 123-139. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p123bwm/
[000] [1] E. Boeckx, O. Kowalski and L. Vanhecke, Riemannian Manifolds of Conullity Two, World Sci., 1996. | Zbl 0904.53006
[001] [2] P. Bueken and L. Vanhecke, Examples of curvature homogeneous Lorentz metrics, Classical Quantum Gravity 14 (1997), L93-L96. | Zbl 0882.53036
[002] [3] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry I, Interscience, New York, 1963. | Zbl 0119.37502
[003] [4] B. Opozda, On curvature homogeneous and locally homogeneous affine connections, Proc. Amer. Math. Soc. 124 (1996), 1889-1893. | Zbl 0864.53013
[004] [5] B. Opozda, Affine versions of Singer's Theorem on locally homogeneous spaces, Ann. Global Anal. Geom. 15 (1997), 187-199. | Zbl 0881.53010
[005] [6] I. M. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697. | Zbl 0171.42503