We continue an investigation into centered spaces, a generalization of dyadic spaces. The presence of large Cantor cubes in centered spaces is deduced from tightness considerations. It follows that for centered spaces X, πχ(X) = t(X), and if X has uncountable tightness, then t(X) = supκ : ⊂ X. The relationships between 9 popular cardinal functions for the class of centered spaces are justified. An example is constructed which shows, unlike the dyadic and polyadic properties, that the centered property is not preserved by passage to a zeroset.
@article{bwmeta1.element.bwnjournal-article-cmv80i2p297bwm, author = {Murray Bell}, title = {Tightness and $\pi$-character in centered spaces}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {297-307}, zbl = {0936.54006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv80i2p297bwm} }
Bell, Murray. Tightness and π-character in centered spaces. Colloquium Mathematicae, Tome 79 (1999) pp. 297-307. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv80i2p297bwm/
[000] [1] A. Arkhangel'skiĭ, Approximation of the theory of dyadic bicompacta, Soviet Math. Dokl. 10 (1969), 151-154.
[001] [2] A. Arkhangel'skiĭ, On bicompacta hereditarily satisfying Suslin's condition. Tightness and free sequences, ibid. 12 (1971), 1253-1257. | Zbl 0235.54006
[002] [3] A. Arkhangel'skiĭ, Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys 33 (1978), no. 6, 33-96. | Zbl 0428.54002
[003] [4] M. Bell, Generalized dyadic spaces, Fund. Math. 125 (1985), 47-58. | Zbl 0589.54019
[004] [5] M. Bell, subspaces of hyadic spaces, Proc. Amer. Math. Soc. 104 (1988), 635-640. | Zbl 0691.54013
[005] [6] J. Gerlits, On subspaces of dyadic compacta, Studia Sci. Math. Hungar. 11 (1976), 115-120. | Zbl 0433.54003
[006] [7] J. Gerlits, On a generalization of dyadicity, ibid. 13 (1978), 1-17. | Zbl 0475.54012
[007] [8] I. Juhász, Cardinal Functions in Topology--Ten Years Later, Math. Centre Tracts 123, Mathematisch Centrum, Amsterdam, 1980. | Zbl 0479.54001
[008] [9] I. Juhász and S. Shelah, for compact , Topology Appl. 32 (1989), 289-294.
[009] [10] W. Kulpa and M. Turzański, Bijections onto compact spaces, Acta Univ. Carolin. Math. Phys. 29 (1988), 43-49. | Zbl 0676.54028
[010] [11] G. Plebanek, Compact spaces that result from adequate families of sets, Topology Appl. 65 (1995), 257-270. | Zbl 0869.54003
[011] [12] G. Plebanek, Erratum to 'Compact spaces that result from adequate families of sets', ibid. 72 (1996), 99.
[012] [13] B. Shapirovskiĭ, Maps onto Tikhonov cubes, Russian Math. Surveys 35 (1980), no. 3, 145-156. | Zbl 0462.54013
[013] [14] M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. of Math. 110 (1979), 407-438. | Zbl 0393.46019
[014] [15] S. Todorčević, Remarks on cellularity in products, Compositio Math. 57 (1986), 357-372. | Zbl 0616.54002
[015] [16] M. Turzański, On generalizations of dyadic spaces, Acta Univ. Carolin. Math. Phys. 30 (1989), 153-159. | Zbl 0713.54040
[016] [17] M. Turzański, Cantor cubes: chain conditions, Prace Nauk. Uniw. Śląsk. Katowic. 1612 (1996). | Zbl 0862.54021