A duality result for almost split sequences
Hügel, Lidia ; Valenta, Helmut
Colloquium Mathematicae, Tome 79 (1999), p. 267-292 / Harvested from The Polish Digital Mathematics Library

Over an artinian hereditary ring R, we discuss how the existence of almost split sequences starting at the indecomposable non-injective preprojective right R-modules is related to the existence of almost split sequences ending at the indecomposable non-projective preinjective left R-modules. This answers a question raised by Simson in [27] in connection with pure semisimple rings.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210718
@article{bwmeta1.element.bwnjournal-article-cmv80i2p267bwm,
     author = {Lidia H\"ugel and Helmut Valenta},
     title = {A duality result for almost split sequences},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {267-292},
     zbl = {0953.16010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv80i2p267bwm}
}
Hügel, Lidia; Valenta, Helmut. A duality result for almost split sequences. Colloquium Mathematicae, Tome 79 (1999) pp. 267-292. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv80i2p267bwm/

[000] [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, 2nd ed., Springer, New York, 1992. | Zbl 0765.16001

[001] [2] L. Angeleri Hügel, P1-hereditary artin algebras, J. Algebra 176 (1995), 460-479.

[002] [3] L. Angeleri Hügel, Almost split sequences arising from the preprojective partition, ibid. 194 (1997), 1-13.

[003] [4] L. Angeleri Hügel, Finitely cotilting modules, Comm. Algebra, to appear.

[004] [5] L. Angeleri Hügel, On some precovers and preenvelopes, preprint, 1998.

[005] [6] M. Auslander, Large modules over artin algebras, in: Algebra, Topology, Category Theory, Academic Press, 1976, 1-17.

[006] [7] M. Auslander, Functors and morphisms determined by objects, in: Lecture Notes in Pure and Appl. Math. 37, Marcel Dekker, 1978, 1-244.

[007] [8] M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94 (1969). | Zbl 0204.36402

[008] [9] M. Auslander and I. Reiten, Representation theory of artin algebras III. Almost split sequences, Comm. Algebra 3 (1975), 239-294. | Zbl 0331.16027

[009] [10] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.

[010] [11] M. Auslander and S. O. Smalο, Preprojective modules over artin algebras, J. Algebra 66 (1980), 61-122. | Zbl 0477.16013

[011] [12] R. R. Colby and K. R. Fuller, Tilting, cotilting, and serially tilted rings, Comm. Algebra 18 (1990), 1585-1615. | Zbl 0703.16013

[012] [13] R. Colpi, Some remarks on equivalences between categories of modules, ibid. 18 (1990), 1935-1951. | Zbl 0708.16002

[013] [14] R. Colpi, Tilting modules and *-modules, ibid. 21 (1993), 1095-1102. | Zbl 0795.16004

[014] [15] R. Colpi, G. D'Este and A. Tonolo, Quasi-tilting modules and counter equivalences, J. Algebra 191 (1997), 461-494. | Zbl 0876.16004

[015] [16] N. V. Dung, Preinjective modules and finite representation type of artinian rings, Comm. Algebra, to appear. | Zbl 0953.16011

[016] [17] P. Gabriel and A. V. Roiter, Algebra VIII: Representations of Finite-Dimensional Algebras, Encyclopedia Math. Sci. 73, Springer, 1992. | Zbl 0839.16001

[017] [18] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. | Zbl 0503.16024

[018] [19] I. Herzog, A test for finite representation type, J. Pure Appl. Algebra 95 (1994), 151-182. | Zbl 0814.16011

[019] [20] M. Hoshino, Tilting modules and torsion theories, Bull. London Math. Soc. 14 (1982), 334-336. | Zbl 0486.16019

[020] [21] M. Hoshino, On splitting torsion theories induced by tilting modules, Comm. Algebra 11 (1983), 427-439. | Zbl 0506.16018

[021] [22] R C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.

[022] [23] M. Schmidmeier, A dichotomy for finite length modules induced by local duality, Comm. Algebra 25 (1997), 1933-1944. | Zbl 0885.16010

[023] [24] M. Schmidmeier, The local duality for homomorphisms and an application to pure semisimple PI-rings, Colloq. Math. 77 (1998), 121-132. | Zbl 0915.16001

[024] [25] D. Simson, Pure semisimple categories and rings of finite representation type, J. Algebra 48 (1977), 290-296; Corrigendum, ibid. 67 (1980), 254-256. | Zbl 0409.16030

[025] [26] D. Simson, On pure-semisimple Grothendieck categories, I, Fund. Math. 100 (1978), 211-222. | Zbl 0392.18012

[026] [27] D. Simson, Partial Coxeter functors and right pure semisimple hereditary rings, J. Algebra 71 (1981), 195-218. | Zbl 0477.16014

[027] [28] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, 1992. | Zbl 0818.16009

[028] [29] D. Simson, An Artin problem for division ring extensions and the pure semisimplicity conjecture I, Arch. Math. (Basel) 66 (1996), 114-122. | Zbl 0873.16010

[029] [30] D. Simson, A class of potential counter-examples to the pure semisimplicity conjecture, in: Adv. Algebra Model Theory 9, Gordon and Breach, 1997, 345-373. | Zbl 0936.16010

[030] [31] H. Valenta, Existence criteria and construction methods for certain classes of tilting modules, Comm. Algebra 22 (1994), 6047-6072. | Zbl 0827.16005

[031] [32] W. Zimmermann, Existenz von Auslander-Reiten-Folgen, Arch. Math. (Basel) 40 (1983), 40-49. | Zbl 0513.16019

[032] [33] B. Zimmermann-Huisgen, Strong preinjective partitions and representation type of artinian rings, Proc. Amer. Math. Soc. 109 (1990), 309-322.

[033] [34] B. Zimmermann-Huisgen and W. Zimmermann, On the sparsity of representations of rings of pure global dimension zero, Trans. Amer. Math. Soc. 320 (1990), 695-711. | Zbl 0699.16019