We recall the determination of all the dihedral CM-fields with relative class number one, and prove that dicyclic CM-fields have relative class numbers greater than one.
@article{bwmeta1.element.bwnjournal-article-cmv80i2p259bwm, author = {St\'ephane Louboutin}, title = {The class number one problem for the dihedral and dicyclic CM-fields}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {259-265}, zbl = {1036.11056}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv80i2p259bwm} }
Louboutin, Stéphane. The class number one problem for the dihedral and dicyclic CM-fields. Colloquium Mathematicae, Tome 79 (1999) pp. 259-265. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv80i2p259bwm/
[000] [Hof] J. Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. Math. 55 (1979), 37-47. | Zbl 0474.12009
[001] [Lef] Y. Lefeuvre, Corps diédraux à multiplication complexe principaux, preprint, Univ. Caen, 1998.
[002] [LL] Y. Lefeuvre and S. Louboutin, The class number one problem for the dihedral CM-fields, in: Proc. Conf. on Algebraic Number Theory and Diophantine Analysis, Graz, August-September 1998, to appear. | Zbl 0958.11071
[003] [LLO] F. Lemmermeyer, S. Louboutin and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of degree 24, J. Théor. Nombres Bordeaux, to appear. | Zbl 1010.11063
[004] [Lou1] S. Louboutin, Determination of all quaternion octic CM-fields with class number 2, J. London Math. Soc. 54 (1996), 227-238. | Zbl 0861.11064
[005] [Lou2] S. Louboutin, CM-fields with cyclic ideal class groups of 2-power orders, J. Number Theory 67 (1997), 1-10. | Zbl 0881.11078
[006] [LO1] S. Louboutin and R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith. 67 (1994), 47-62. | Zbl 0809.11069
[007] [LO2] S. Louboutin and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of 2-power degrees, Proc. London Math. Soc. (3) 76 (1998), 523-548. | Zbl 0891.11054
[008] [LOO] S. Louboutin, R. Okazaki and M. Olivier, The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc. 349 (1997), 3657-3678. | Zbl 0893.11045
[009] [Mar] J. Martinet, Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre 2p, Ann. Inst. Fourier (Grenoble) 19 (1969), no. 1, 1-80. | Zbl 0165.06502
[010] [Odl] A. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. Math. 29 (1975), 275-286. | Zbl 0299.12010
[011] [TW] A. D. Thomas and G. V. Wood, Group Tables, Shiva Publ. Kent, 1980.
[012] [Wa] L. C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982; 2nd ed., 1997.
[013] [Yam] K. Yamamura, The determination of the imaginary abelian number fields with class-number one, Math. Comp. 206 (1994), 899-921. | Zbl 0798.11046