A Paley-Wiener theorem on NA harmonic spaces
Astengo, Francesca ; di Blasio, Bianca
Colloquium Mathematicae, Tome 79 (1999), p. 211-233 / Harvested from The Polish Digital Mathematics Library

Let N be an H-type group and consider its one-dimensional solvable extension NA, equipped with a suitable left-invariant Riemannian metric. We prove a Paley-Wiener theorem for nonradial functions on NA supported in a set whose boundary is a horocycle of the form Na, a ∈ A.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210713
@article{bwmeta1.element.bwnjournal-article-cmv80i2p211bwm,
     author = {Francesca Astengo and Bianca di Blasio},
     title = {A Paley-Wiener theorem on NA harmonic spaces},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {211-233},
     zbl = {0938.43003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv80i2p211bwm}
}
Astengo, Francesca; di Blasio, Bianca. A Paley-Wiener theorem on NA harmonic spaces. Colloquium Mathematicae, Tome 79 (1999) pp. 211-233. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv80i2p211bwm/

[000] [ADY] J.-P. Anker, E. Damek and C. Yacoub, Spherical analysis on harmonic AN groups, Ann. Scuola Norm. Sup. Pisa 33 (1996), 643-679. | Zbl 0881.22008

[001] [ACD] F. Astengo, R. Camporesi and B. Di Blasio, The Helgason Fourier transform on a class of nonsymmetric harmonic spaces, Bull. Austral. Math. Soc. 55 (1997), 405-424. | Zbl 0894.43003

[002] M. Cowling, A. H. Dooley, A. Korányi and F. Ricci, An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal., to appear. | Zbl 0966.53039

[003] [CH] M. G. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math. 96 (1989), 507-549. | Zbl 0681.43012

[004] [Da1] E. Damek, A Poisson kernel on Heisenberg type nilpotent groups, Colloq. Math. 53 (1987), 239-247. | Zbl 0661.53035

[005] [Da2] E. Damek, Curvature of a semidirect extension of a Heisenberg type nilpotent group, ibid., 249-253.

[006] [Da3] E. Damek, Geometry of a semidirect extension of a Heisenberg type nilpotent group, ibid., 255-268.

[007] E. Damek and F. Ricci, Harmonic analysis on solvable extensions of H-type groups, J. Geom. Anal. 2 (1992), 213-248. | Zbl 0788.43008

[008] E. Damek and F. Ricci, A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc. 27 (1992), 139-142. | Zbl 0755.53032

[009] [Di] B. Di Blasio, Paley-Wiener type theorems on harmonic extensions of H-type groups, Monatsh. Math. 123 (1997), 21-42. | Zbl 0887.43001

[010] [DoZ] A. Dooley and G. Zhang, Spherical functions on H-type groups, preprint.

[011] [EbO] P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45-109.

[012] A. Erdélyi, W. Magnus, F. Oberhettinger and G. Tricomi, Higher Transcendental Functions, Vols. I, II, McGraw-Hill, New York, 1953. | Zbl 0051.30303

[013] [F] J. Faraut, Un théorème de Paley-Wiener pour la transformation de Fourier sur un espace riemannien symétrique de rang un, J. Funct. Anal. 49 (1982), 230-268. | Zbl 0526.43005

[014] [GV] R. Gangolli and V. S. Varadarajan, Harmonic Analysis of Spherical Functions on Real Reductive Groups, Ergeb. Math. Grenzgeb. 101, Springer, Berlin and New York, 1988. | Zbl 0675.43004

[015] [HC] Harish-Chandra, Discrete series for semisimple Lie groups, Acta Math. 116 (1966), 1-111. | Zbl 0199.20102

[016] [He] S. Helgason, Geometric Analysis on Symmetric Spaces, Math. Surveys Monographs 39, Amer. Math. Soc., Providence, R.I., 1994.

[017] [H] A. Hulanicki, Subalgebra of L1(G) associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. | Zbl 0316.43005

[018] [HR] A. Hulanicki and F. Ricci, A Tauberian theorem and tangential convergence for bounded harmonic functions on balls in Cn, Invent. Math. 62 (1980), 325-331. | Zbl 0449.31008

[019] [Ka1] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147-153.

[020] [Ka2] A. Kaplan, Riemannian nilmanifolds attached to Clifford modules, Geom. Dedicata 11 (1981), 127-136. | Zbl 0495.53046

[021] [Ko1] A. Korányi, Some applications of Gelfand pairs in classical analysis, in: Harmonic Analysis and Group Representations, C.I.M.E., Liguori, Napoli, 1980, 333-348.

[022] [Ko2] A. Korányi, Geometric properties of Heisenberg type groups, Adv. Math. 56 (1985), 28-38. | Zbl 0589.53053

[023] [Ri1] F. Ricci, Harmonic analysis on groups of type H, preprint.

[024] [Ri2] F. Ricci, The spherical transform on harmonic extensions of H-type groups, Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), 381-392. | Zbl 0829.43021

[025] [RWW] H. S. Ruse, A. G. Walker and T. J. Willmore, Harmonic Spaces, Edizioni Cremonese, Roma, 1961.

[026] [V] V. S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Lecture Notes in Math. 576, Springer, Berlin, 1977. | Zbl 0354.43001