Our main purpose of this paper is to introduce a natural generalization of the Bochner curvature tensor on a Hermitian manifold provided with the Hermitian connection. We will call the pseudo-Bochner curvature tensor. Firstly, we introduce a unique tensor P, called the (Hermitian) pseudo-curvature tensor, which has the same symmetries as the Riemannian curvature tensor on a Kähler manifold. By using P, we derive a necessary and sufficient condition for a Hermitian manifold to be of pointwise constant Hermitian holomorphic sectional curvature. Our pseudo-Bochner curvature tensor is naturally obtained from the conformal relation for the pseudo-curvature tensor P and it is conformally invariant. Moreover we show that is different from the Bochner conformal tensor in the sense of Tricerri and Vanhecke.
@article{bwmeta1.element.bwnjournal-article-cmv80i2p201bwm, author = {Koji Matsuo}, title = {Pseudo-Bochner curvature tensor on Hermitian manifolds}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {201-209}, zbl = {0940.53039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv80i2p201bwm} }
Matsuo, Koji. Pseudo-Bochner curvature tensor on Hermitian manifolds. Colloquium Mathematicae, Tome 79 (1999) pp. 201-209. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv80i2p201bwm/
[000] [1] A. Balas, Compact Hermitian manifolds of constant holomorphic sectional curvature, Math. Z. 189 (1985), 193-210. | Zbl 0575.53044
[001] [2] S. Bochner, Curvature and Betti numbers, II, Ann. of Math. 50 (1949), 77-93.
[002] [3] L. A. Cordero, M. Fernández and A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986), 375-380. | Zbl 0596.53030
[003] [4] G. Ganchev, S. Ivanov and V. Mihova, Curvatures on anti-Kaehler manifolds, Riv. Mat. Univ. Parma (5) 2 (1993), 249-256. | Zbl 1010.53506
[004] [5] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Interscience Publ., New York, 1969. | Zbl 0175.48504
[005] [6] K. Matsuo, Locally conformally Hermitian-flat manifolds, Ann. Global Anal. Geom. 13 (1995), 43-54. | Zbl 0845.53049
[006] [7] K. Matsuo, On local conformal Hermitian-flatness of Hermitian manifolds, Tokyo J. Math. 19 (1996), 499-515. | Zbl 0882.53050
[007] [8] S. Tachibana, On the Bochner curvature tensor, Nat. Sci. Rep. Ochanomizu Univ. 18 (1967), 15-19. | Zbl 0161.41202
[008] [9] F. Tricerri and L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-398. | Zbl 0484.53014
[009] [10] I. Vaisman, Generalized Hopf manifolds, Geom. Dedicata 13 (1982), 231-255.