Pseudo-Bochner curvature tensor on Hermitian manifolds
Matsuo, Koji
Colloquium Mathematicae, Tome 79 (1999), p. 201-209 / Harvested from The Polish Digital Mathematics Library

Our main purpose of this paper is to introduce a natural generalization BH of the Bochner curvature tensor on a Hermitian manifold M provided with the Hermitian connection. We will call BH the pseudo-Bochner curvature tensor. Firstly, we introduce a unique tensor P, called the (Hermitian) pseudo-curvature tensor, which has the same symmetries as the Riemannian curvature tensor on a Kähler manifold. By using P, we derive a necessary and sufficient condition for a Hermitian manifold to be of pointwise constant Hermitian holomorphic sectional curvature. Our pseudo-Bochner curvature tensor BH is naturally obtained from the conformal relation for the pseudo-curvature tensor P and it is conformally invariant. Moreover we show that BH is different from the Bochner conformal tensor in the sense of Tricerri and Vanhecke.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210712
@article{bwmeta1.element.bwnjournal-article-cmv80i2p201bwm,
     author = {Koji Matsuo},
     title = {Pseudo-Bochner curvature tensor on Hermitian manifolds},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {201-209},
     zbl = {0940.53039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv80i2p201bwm}
}
Matsuo, Koji. Pseudo-Bochner curvature tensor on Hermitian manifolds. Colloquium Mathematicae, Tome 79 (1999) pp. 201-209. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv80i2p201bwm/

[000] [1] A. Balas, Compact Hermitian manifolds of constant holomorphic sectional curvature, Math. Z. 189 (1985), 193-210. | Zbl 0575.53044

[001] [2] S. Bochner, Curvature and Betti numbers, II, Ann. of Math. 50 (1949), 77-93.

[002] [3] L. A. Cordero, M. Fernández and A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986), 375-380. | Zbl 0596.53030

[003] [4] G. Ganchev, S. Ivanov and V. Mihova, Curvatures on anti-Kaehler manifolds, Riv. Mat. Univ. Parma (5) 2 (1993), 249-256. | Zbl 1010.53506

[004] [5] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Interscience Publ., New York, 1969. | Zbl 0175.48504

[005] [6] K. Matsuo, Locally conformally Hermitian-flat manifolds, Ann. Global Anal. Geom. 13 (1995), 43-54. | Zbl 0845.53049

[006] [7] K. Matsuo, On local conformal Hermitian-flatness of Hermitian manifolds, Tokyo J. Math. 19 (1996), 499-515. | Zbl 0882.53050

[007] [8] S. Tachibana, On the Bochner curvature tensor, Nat. Sci. Rep. Ochanomizu Univ. 18 (1967), 15-19. | Zbl 0161.41202

[008] [9] F. Tricerri and L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-398. | Zbl 0484.53014

[009] [10] I. Vaisman, Generalized Hopf manifolds, Geom. Dedicata 13 (1982), 231-255.