On quasi-p-bounded subsets
Sanchis, M. ; Tamariz-Mascarúa, A.
Colloquium Mathematicae, Tome 79 (1999), p. 175-189 / Harvested from The Polish Digital Mathematics Library

The notion of quasi-p-boundedness for p ∈ ω* is introduced and investigated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show that the concepts of RK-compatible ultrafilter and P-point in ω* can be defined in terms of quasi-p-pseudocompactness. For p ∈ ω*, we prove that a subset B of a space X is quasi-p-bounded in X if and only if B × PRK(p) is bounded in X × PRK(p), if and only if clβ(X×PRK(p))(B×PRK(p))=clβXB×β(ω), where PRK(p) is the set of Rudin-Keisler predecessors of p.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210710
@article{bwmeta1.element.bwnjournal-article-cmv80i2p175bwm,
     author = {M. Sanchis and A. Tamariz-Mascar\'ua},
     title = {On quasi-p-bounded subsets},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {175-189},
     zbl = {0970.54007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv80i2p175bwm}
}
Sanchis, M.; Tamariz-Mascarúa, A. On quasi-p-bounded subsets. Colloquium Mathematicae, Tome 79 (1999) pp. 175-189. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv80i2p175bwm/

[000] [1] A. R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185-193. | Zbl 0198.55401

[001] [2] J. L. Blasco, Two problems on kr-spaces, Acta Math. Hungar. 32 (1978), 27-30. | Zbl 0388.54017

[002] [3] A. Blass and S. Shelah, There may be simple P1-points and P2-points and the Rudin-Keisler ordering may be downward directed, Ann. Pure Appl. Logic 33 (1987), 213-243. | Zbl 0634.03047

[003] [4] R. Engelking, General Topology, Polish Sci. Publ., Warszawa, 1977.

[004] [5] Z. Frolík, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91. | Zbl 0166.18602

[005] [6] Z. Frolík, The topological product of two pseudocompact spaces, Czechoslovak Math. J. 85 (1960), 339-349. | Zbl 0099.38503

[006] [7] S. García-Ferreira, Some generalizations of pseudocompactness, in: Ann. New York Acad. Sci. 728, New York Acad. Sci., 1994, 22-31. | Zbl 0911.54022

[007] [8] S. García-Ferreira, V. I. Malykhin and A. Tamariz-Mascarúa , Solutions and problems on convergence structures to ultrafilters, Questions Answers Gen. Topology 13 (1995), 103-122 .

[008] [9] S. García-Ferreira, M. Sanchis and S. Watson , Some remarks on the product of Cα-compact subsets, Czechoslovak Math. J., to appear. | Zbl 1050.54016

[009] [10] J. Ginsburg and V. Saks, Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), 403-418. | Zbl 0288.54020

[010] [11] S. Hernández, M. Sanchis and M. Tkačenko , Bounded sets in spaces and topological groups, Topology Appl., to appear. | Zbl 0979.54037

[011] [12] A. Kato, A note on pseudocompact kr-spaces, Proc. Amer. Math. Soc. 61 (1977), 175-176. | Zbl 0347.54026

[012] [13] M. Katětov, Characters and types of point sets, Fund. Math. 50 (1961), 367-380.

[013] [14] M. Katětov, Products of filters, Comment. Math. Univ. Carolin. 9 (1968), 173-189. | Zbl 0155.50301

[014] [15] N. N. Noble, Ascoli theorems and the exponential map, Trans. Amer. Math. Soc. 143 (1969), 393-411. | Zbl 0229.54017

[015] [16] N. N. Noble, Countably compact and pseudocompact products, Czechoslovak Math. J. 19 (1969), 390-397. | Zbl 0184.47706

[016] [17] M. E. Rudin, Partial orders on the types of βℕ, Trans. Amer. Math. Soc. 155 (1971), 353-362.

[017] [18] M. Sanchis and A. Tamariz-Mascarúa, p-pseudocompactness and related topics in topological spaces, Topology Appl., to appear.

[018] [19] M. G. Tkačenko, Compactness type properties in topological groups, Czechoslovak Math. J. 113 (1988), 324-341.