By an extension algebra of a finite-dimensional K-algebra A we mean a Hochschild extension algebra of A by the dual A-bimodule . We study the problem of when extension algebras of a K-algebra A are symmetric. (1) For an algebra A= KQ/I with an arbitrary finite quiver Q, we show a sufficient condition in terms of a 2-cocycle for an extension algebra to be symmetric. (2) Let L be a finite extension field of K. By using a given 2-cocycle of the K-algebra L, we construct a 2-cocycle of the K-algebra LQ for an arbitrary finite quiver Q without oriented cycles. Then we show a criterion on L for all those K-algebras LQ to have symmetric non-splittable extension algebras defined by the 2-cocycles.
@article{bwmeta1.element.bwnjournal-article-cmv80i2p155bwm, author = {Yosuke Ohnuki and Kaoru Takeda and Kunio Yamagata}, title = {Symmetric Hochschild extension algebras}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {155-174}, zbl = {0961.16002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv80i2p155bwm} }
Ohnuki, Yosuke; Takeda, Kaoru; Yamagata, Kunio. Symmetric Hochschild extension algebras. Colloquium Mathematicae, Tome 79 (1999) pp. 155-174. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv80i2p155bwm/
[000] [1] G. Azumaya and T. Nakayama, Algebra II (Ring Theory), Iwanami Shoten, Tokyo, 1958.
[001] [2] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton, N.J., 1956.
[002] [3] Yu. A. Drozd and V. V. Kirichenko, Finite Dimensional Algebras, Springer, Berlin, 1994.
[003] [4] S. Eilenberg, A. Rosenberg and D. Zelinsky, On the dimension of modules and algebras, VIII, Nagoya Math. J. 12 (1957), 71-93. | Zbl 0212.05901
[004] [5] K. Erdmann, O. Kerner and A. Skowroński, Self-injective algebras of wild tilted type, J. Pure Appl. Algebra, to appear. | Zbl 0994.16015
[005] [6] D. Happel, Hochschild cohomology of finite-dimensional algebras, in: Séminaire d'Algèbre P. Dubreil et M.-P. Malliavin 1987-88, Lecture Notes in Math. 1404, Springer, Berlin, 1989, 108-126.
[006] [7] T. Nakayama, On Frobeniusean algebras, I, Ann. of Math. 40 (1939), 611-633. | Zbl 0021.29402
[007] [8] J. Rickard, Derived equivalences as derived functors, J. London Math. Soc. 43 (1991), 37-48. | Zbl 0683.16030
[008] [9] A. Skowroński and K. Yamagata, Socle deformations of self-injective algebras, Proc. London Math. Soc. 72 (1996), 545-566. | Zbl 0862.16001
[009] [10] A. Skowroński and K. Yamagata, Stable equivalence of selfinjective algebras of tilted type, Arch. Math. (Basel) 70 (1998), 341-350. | Zbl 0915.16005
[010] [11] K. Yamagata, Extensions over hereditary artinian rings with self-dualities, I, J. Algebra 73 (1981), 386-433. | Zbl 0471.16022
[011] [12] K. Yamagata, Representations of non-splittable extension algebras, J. Algebra 115 (1988), 32-45. | Zbl 0644.16020
[012] [13] K. Yamagata, Frobenius algebras, in: Handbook of Algebra, Vol. 1, Elsevier, 1996, 841-887. | Zbl 0879.16008