@article{bwmeta1.element.bwnjournal-article-cmv80i1p97bwm, author = {Ulrich Albrecht and H. Goeters}, title = {Strong ${\mathcal {S}}$-groups}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {97-105}, zbl = {0931.20041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv80i1p97bwm} }
Albrecht, Ulrich; Goeters, H. Strong ${\mathcal {S}}$-groups. Colloquium Mathematicae, Tome 79 (1999) pp. 97-105. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv80i1p97bwm/
[000] [1] U. Albrecht, The construction of A-solvable abelian groups, Czechoslovak Math. J. 44 (119) (1994), 413-430. | Zbl 0823.20056
[001] [2] U. Albrecht and H. P. Goeters, Pure subgroups of A-projective groups, Acta Math. Hungar. 65 (1994), 217-227. | Zbl 0814.20038
[002] [3] D. M. Arnold, Endomorphism rings and subgroups of finite rank torsion-free abelian groups, Rocky Mountain J. Math. 12 (1982), 241-256. | Zbl 0502.20031
[003] [4] D. M. Arnold and L. Lady, Endomorphism rings and direct sums of torsion free abelian groups, Trans. Amer. Math. Soc. 211 (1975), 225-237. | Zbl 0329.20033
[004] [5] R. A. Beaumont and R. S. Pierce, Torsion-free groups of rank 2, Mem. Amer. Math. Soc. 38 (1961). | Zbl 0122.27802
[005] [6] T. G. Faticoni and H. P. Goeters, On torsion-free Ext, Comm. Algebra 16 (1988), 1853-1876. | Zbl 0667.20042
[006] [7] H. P. Goeters and W. Ullery, Homomorphic images of completely decomposable finite rank torsion-free groups, J. Algebra 104 (1991), 1-11. | Zbl 0739.20024
[007] [8] U F. Ulmer, A flatness criterion in Grothendieck categories, Invent. Math. 19 (1973), 331-336.
[008] [9] R. B. Warfield, Extensions of torsion-free abelian groups of finite rank, Arch. Math. (Basel) 23 (1972), 145-150. | Zbl 0244.20064