@article{bwmeta1.element.bwnjournal-article-cmv80i1p83bwm, author = {S. Gangopadhyay and B. Rao}, title = {Completeness of $L\_1$ spaces over finitely additive probabilities}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {83-95}, zbl = {0940.28005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv80i1p83bwm} }
Gangopadhyay, S.; Rao, B. Completeness of $L_1$ spaces over finitely additive probabilities. Colloquium Mathematicae, Tome 79 (1999) pp. 83-95. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv80i1p83bwm/
[000] [1] K. P. S. Bhaskara Rao and M. Bhaskara Rao, Theory of Charges--a Study of Finitely Additive Measures, Academic Press, 1983. | Zbl 0516.28001
[001] [2] R. Chen, A finitely additive version of Kolmogorov's law of iterated logarithm, Israel J. Math. 23 (1976), 209-220. | Zbl 0367.60027
[002] [3] R. Chen, Some finitely additive versions of the strong law of large numbers, ibid. 24 (1976), 244-259. | Zbl 0367.60026
[003] [4] L. E. Dubins and L. J. Savage, How to Gamble if You Must: Inequalities for Stochastic Processes, McGraw-Hill, 1965. | Zbl 0133.41402
[004] [5] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, 1958.
[005] [6] S. Gangopadhyay, On the completeness of -spaces over a charge, Colloq. Math. 58 (1990), 291-300. | Zbl 0719.28002
[006] [7] S. Gangopadhyay and B. V. Rao, Some finitely additive probability: random walks, J. Theoret. Probab. 10 (1997), 643-657. | Zbl 0886.60001
[007] [8] S. Gangopadhyay and B. V. Rao, Strategic purely nonatomic random walks, ibid. 11 (1998), 409-415. | Zbl 0914.60039
[008] [9] S. Gangopadhyay and B. V. Rao, On the Hewitt-Savage zero one law in the strategic setup, preprint. | Zbl 0978.60028
[009] [10] J. W. Hagood, A Radon-Nikodym theorem and completeness for finitely additive vector measures, J. Math. Anal. App. 113 (1986), 266-279. | Zbl 0601.28005
[010] [11] A. Halevy and M. Bhaskara Rao, On an analogue of Komlos' theorem for strategies, Ann. Probab. 7 (1979), 1073-1077. | Zbl 0425.60022
[011] [12] D. Heath and W. D. Sudderth, On finitely additive priors coherence and extended admissibility, Ann. Statist. 6 (1978), 333-345. | Zbl 0385.62005
[012] [13] D. Heath and W. D. Sudderth, Coherent inference from improper priors and from finitely additive priors, ibid. 17 (1989), 907-919. | Zbl 0687.62003
[013] [14] E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955), 470-501. | Zbl 0066.29604
[014] [15] R. L. Karandikar, A general principle for limit theorems in finitely additive probability, ibid. 273 (1982), 541-550. | Zbl 0507.60012
[015] [16] R. L. Karandikar, A general principle for limit theorems in finitely additive probability the dependent case, J. Multivariate Anal. 24 (1988), 189-206. | Zbl 0638.60026
[016] [17] D. A. Lane and W. D. Sudderth, Diffuse models for sampling and predictive inference, Ann. Statist. 6 (1978), 1318-1336. | Zbl 0398.62003
[017] [18] R. A. Purves and W. D. Sudderth, Some finitely additive probability, Ann. Probab. 4 (1976), 259-276. | Zbl 0367.60034
[018] [19] R. A. Purves and W. D. Sudderth, Finitely additive zero-one laws, Sankhyā Ser. A 45 (1983), 32-37. | Zbl 0535.60030
[019] [20] S. Ramakrishnan, Finitely additive Markov chains, Ph.D. thesis, Indian Statistical Institute, 1980. | Zbl 0474.60027
[020] [21] S. Ramakrishnan, Finitely additive Markov chains, Trans. Amer. Math. Soc. 265 (1981), 247-272. | Zbl 0474.60027
[021] [22] S. Ramakrishnan, Central limit theorem in a finitely additive setting, Illinois J. Math. 28 (1984), 139-161. | Zbl 0514.60030
[022] [23] S. Ramakrishnan, Potential theory for finitely additive Markov chains, Stochastic Process. Appl. 16 (1984), 287-303. | Zbl 0538.60079
[023] [24] R. Ranga Rao, A note on finitely additive measures, Sankhyā Ser. A 18 (1958), 27-28. | Zbl 0082.26503
[024] [25] A. Sobczyk and P. C. Hammer, A decomposition of additive set functions, Duke Math. J. 11 (1944), 839-846. | Zbl 0063.07111
[025] [26] K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46-66. | Zbl 0046.05401