We study harmonic functions for the Laplace-eltrami operator on the real hyperbolic space . We obtain necessary and sufficient conditions for these functions and their normal derivatives to have a boundary distribution. In doing so, we consider different behaviors of hyperbolic harmonic functions according to the parity of the dimension of the hyperbolic ball . We then study the Hardy spaces , 0
@article{bwmeta1.element.bwnjournal-article-cmv80i1p63bwm, author = {Philippe Jaming}, title = {Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {63-82}, zbl = {0930.43012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv80i1p63bwm} }
Jaming, Philippe. Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces. Colloquium Mathematicae, Tome 79 (1999) pp. 63-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv80i1p63bwm/
[000] [1] P. Ahern, J. Bruna and C. Cascante, -theory for generalized -harmonic functions in the unit ball, Indiana Univ. Math. J. 45 (1996), 103-145. | Zbl 0866.32007
[001] [2] E. P. van den Ban and H. Schlichtkrull, Assymptotic expansions and boundary values of eigenfunctions on Riemannian symmetric spaces, J. Reine Angew. Math. 380 (1987), 108-165. | Zbl 0631.58028
[002] [3] A. Bonami, J. Bruna and S. Grellier, On Hardy, BMO and Lipschitz spaces of invariant harmonic functions in the unit ball, Proc. London Math. Soc. 77 (1998), 665-696. | Zbl 0904.31007
[003] [4] L. Colzani, Hardy spaces on unit spheres, Boll. Un. Mat. Ital. C (6) 4 (1985), 219-244. | Zbl 0585.42021
[004] [5] A. Erdélyi et al. (eds.), Higher Transcendental Functions I, McGraw-Hill, 1953. | Zbl 0051.30303
[005] [6] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078
[006] [7] J. B. Garnett and R. H. Latter, The atomic decomposition for Hardy spaces in several complex variables, Duke Math. J. 45 (1978), 815-845. | Zbl 0403.32006
[007] [8] P. Jaming, Trois problèmes d'analyse harmonique, PhD thesis, Université d'Orlé- ans, 1998.
[008] [9] S. G. Krantz and S. Y. Li, On decomposition theorems for Hardy spaces on domains in and applications, J. Fourier Anal. Appl. 2 (1995), 65-107. | Zbl 0886.32003
[009] [10] J. B. Lewis, Eigenfunctions on symmetric spaces with distribution-valued boundary forms, J. Funct. Anal. 29 (1978), 287-307. | Zbl 0398.43010
[010] [11] K. Minemura, Harmonic functions on real hyperbolic spaces, Hiroshima Math. J. 3 (1973), 121-151. | Zbl 0274.31004
[011] [12] K. Minemura, Eigenfunctions of the Laplacian on a real hyperbolic spaces, J. Math. Soc. Japan 27 (1975), 82-105. | Zbl 0292.35023
[012] [13] H. Samii, Les transformations de Poisson dans la boule hyperbolique, PhD thesis, Université Nancy 1, 1982.
[013] [14] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. | Zbl 0207.13501