Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces
Jaming, Philippe
Colloquium Mathematicae, Tome 79 (1999), p. 63-82 / Harvested from The Polish Digital Mathematics Library

We study harmonic functions for the Laplace-eltrami operator on the real hyperbolic space n. We obtain necessary and sufficient conditions for these functions and their normal derivatives to have a boundary distribution. In doing so, we consider different behaviors of hyperbolic harmonic functions according to the parity of the dimension of the hyperbolic ball n. We then study the Hardy spaces Hp(n), 0

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210706
@article{bwmeta1.element.bwnjournal-article-cmv80i1p63bwm,
     author = {Philippe Jaming},
     title = {Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {63-82},
     zbl = {0930.43012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv80i1p63bwm}
}
Jaming, Philippe. Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces. Colloquium Mathematicae, Tome 79 (1999) pp. 63-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv80i1p63bwm/

[000] [1] P. Ahern, J. Bruna and C. Cascante, Hp-theory for generalized mathcalM-harmonic functions in the unit ball, Indiana Univ. Math. J. 45 (1996), 103-145. | Zbl 0866.32007

[001] [2] E. P. van den Ban and H. Schlichtkrull, Assymptotic expansions and boundary values of eigenfunctions on Riemannian symmetric spaces, J. Reine Angew. Math. 380 (1987), 108-165. | Zbl 0631.58028

[002] [3] A. Bonami, J. Bruna and S. Grellier, On Hardy, BMO and Lipschitz spaces of invariant harmonic functions in the unit ball, Proc. London Math. Soc. 77 (1998), 665-696. | Zbl 0904.31007

[003] [4] L. Colzani, Hardy spaces on unit spheres, Boll. Un. Mat. Ital. C (6) 4 (1985), 219-244. | Zbl 0585.42021

[004] [5] A. Erdélyi et al. (eds.), Higher Transcendental Functions I, McGraw-Hill, 1953. | Zbl 0051.30303

[005] [6] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078

[006] [7] J. B. Garnett and R. H. Latter, The atomic decomposition for Hardy spaces in several complex variables, Duke Math. J. 45 (1978), 815-845. | Zbl 0403.32006

[007] [8] P. Jaming, Trois problèmes d'analyse harmonique, PhD thesis, Université d'Orlé- ans, 1998.

[008] [9] S. G. Krantz and S. Y. Li, On decomposition theorems for Hardy spaces on domains in n and applications, J. Fourier Anal. Appl. 2 (1995), 65-107. | Zbl 0886.32003

[009] [10] J. B. Lewis, Eigenfunctions on symmetric spaces with distribution-valued boundary forms, J. Funct. Anal. 29 (1978), 287-307. | Zbl 0398.43010

[010] [11] K. Minemura, Harmonic functions on real hyperbolic spaces, Hiroshima Math. J. 3 (1973), 121-151. | Zbl 0274.31004

[011] [12] K. Minemura, Eigenfunctions of the Laplacian on a real hyperbolic spaces, J. Math. Soc. Japan 27 (1975), 82-105. | Zbl 0292.35023

[012] [13] H. Samii, Les transformations de Poisson dans la boule hyperbolique, PhD thesis, Université Nancy 1, 1982.

[013] [14] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. | Zbl 0207.13501