We introduce and study a new class of ring extensions based on a new formula involving the heights of their primes. We compare them with the classical altitude inequality and altitude formula, and we give another characterization of locally Jaffard domains, and domains satisfying absolutely the altitude inequality (resp., the altitude formula). Then we study the extensions R ⊆ S where R satisfies the corresponding condition with respect to S (Definition 3.1). This leads to a new characterization of integral extensions.
@article{bwmeta1.element.bwnjournal-article-cmv80i1p39bwm, author = {No\^omen Jarboui}, title = {Some remarks on the altitude inequality}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {39-52}, zbl = {0972.13009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv80i1p39bwm} }
Jarboui, Noômen. Some remarks on the altitude inequality. Colloquium Mathematicae, Tome 79 (1999) pp. 39-52. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv80i1p39bwm/
[000] [1] D. F. Anderson, A. Bouvier, D. E. Dobbs, M. Fontana and S. Kabbaj, On Jaffard domains, Exposition. Math. 6 (1988), 145-175. | Zbl 0657.13011
[001] [2] A. Ayache et P.-J. Cahen, Anneaux vérifiant absolument l'inégalité ou la formule de la dimension, Boll. Un. Mat. Ital. B (7) 6 (1992), 39-65.
[002] [3] A. Ayache, P.-J. Cahen et O. Echi, Anneaux quasi-prüfériens et P-anneaux, ibid. 10 (1996), 1-24.
[003] [4] A. Ayache and A. Jaballah, Residually algebraic pairs of rings, Math. Z. 225 (1997), 49-65.
[004] [5] M. Bennasr, O. Echi, L. Izelgue and N. Jarboui, Pairs of domains where all intermediate domains are Jaffard, J. Pure Appl. Algebra, to appear. | Zbl 1079.13510
[005] [5*] M. Bennasr and N. Jarboui, Intermediate domains between a domain and some intersection of its localizations, submitted for publication.
[006] [6] N. Bourbaki, Algèbre commutative, Chapitres 5 et 6, Masson, Paris, 1985.
[007] [7] A. Bouvier, D. E. Dobbs and M. Fontana, Universally catenarian integral domains, Adv. Math. 72 (1988), 211-238.
[008] [8] P.-J. Cahen, Couples d'anneaux partageant un idéal, Arch. Math. (Basel) 51 (1988), 505-514. | Zbl 0668.13005
[009] [9] P.-J. Cahen, Construction B, I, D et anneaux localement ou résiduellement de Jaffard, ibid. 54 (1990), 125-141.
[010] [10] D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67 (1976), 353-363. | Zbl 0326.13002
[011] [11] D. E. Dobbs, Lying over pairs of commutative rings, Canad. J. Math. 33 (1987), 454-475. | Zbl 0466.13002
[012] [12] O. Echi, Sur les hauteurs valuatives, Boll. Un. Mat. Ital. B (7) 9 (1995), 281-297.
[013] [13] M. Fontana, L. Izelgue et S. Kabbaj, Quelques propriétés des chaînes d’idéaux premiers dans les anneaux , Comm. Algebra 22 (1994), 9-24.
[014] [14] R. Gilmer, Mulltiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[015] [15] P. Jaffard, Théorie de la dimension dans les anneaux de polynômes, Mém. Sci. Math. 146, Gauthier-Villars, Paris, 1960. | Zbl 0096.02502
[016] [16] S. Kabbaj, La formule de la dimension pour les S-domaines forts universels, Boll. Un. Mat. Ital. (6) 5 (1986), 145-161. | Zbl 0651.13008
[017] [17] I. Kaplansky, Commutative Rings, rev. ed., Univ. of Chicago Press, Chicago 1974. | Zbl 0296.13001