Approximation by linear combination of Szász-Mirakian operators
Kasana, H. ; Agrawal, P.
Colloquium Mathematicae, Tome 79 (1999), p. 123-130 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210698
@article{bwmeta1.element.bwnjournal-article-cmv80i1p123bwm,
     author = {H. Kasana and P. Agrawal},
     title = {Approximation by linear combination of Sz\'asz-Mirakian operators},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {123-130},
     zbl = {0941.41008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv80i1p123bwm}
}
Kasana, H.; Agrawal, P. Approximation by linear combination of Szász-Mirakian operators. Colloquium Mathematicae, Tome 79 (1999) pp. 123-130. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv80i1p123bwm/

[000] [1] F. H. Cheng, On the rate of convergence of the Szász-Mirakian operator for functions of bounded variation, J. Approx. Theory 40 (1984), 226-241. | Zbl 0532.41026

[001] [2] J. Gröf, A Szász Ottó-felé operator approximaciós tulajdonsgariól [On the approximation properties of the operators of O. Szász], Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 20 (1971), 35-44 (in Hungarian).

[002] [3] T. Hermann, On the Szász-Mirakian operators, Acta Math. Acad. Sci. Hungar. 32 (1978), 163-173. | Zbl 0392.41011

[003] [4] H. S. Kasana, On approximation of unbounded functions by linear combinations of modified Szász-Mirakian operators, ibid. 61 (1993), 281-288. | Zbl 0794.41014

[004] [5] H. S. Kasana and P. N. Agrawal, On sharp estimates and linear combinations of modified Bernstein polynomials, Bull. Soc. Math. Belg. Sér. B 40 (1988), 61-71. | Zbl 0658.41009

[005] [6] H. S. Kasana, G. Prasad, P. N. Agrawal and A. Sahai, On modified Szász operators, in: Mathematical Analysis and its Applications (Kuwait, 1985), Pergamon Press, Oxford, 1988, 29-41.

[006] [7] C. P. May, Saturation and inverse theorems for combinations of a class of exponential operators, Canad. J. Math. 28 (1976), 1224-1250. | Zbl 0342.41018

[007] [8] S. P. Singh, On the degree of approximation by Szász operators, Bull. Austral. Math. Soc. 24 (1981), 221-225. | Zbl 0511.41027

[008] [9] X. H. Sun, On the simultaneous approximation of functions and their derivatives by the Szász-Mirakian operators, J. Approx. Theory 55 (1988), 279-288.