The aim of this note is to give a complete description of the positive additive functions for the stable nonperiodic translation quivers with finitely many orbits. In particular, we show that all positive additive functions on the stable translation quivers of Euclidean type (respectively, of wild type) are periodic, and hence bounded (respectively, are unbounded, and hence nonperiodic).
@article{bwmeta1.element.bwnjournal-article-cmv79z2p203bwm, author = {Grzegorz Bobi\'nski}, title = {On additive functions for stable translation quivers}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {203-210}, zbl = {0943.16005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv79z2p203bwm} }
Bobiński, Grzegorz. On additive functions for stable translation quivers. Colloquium Mathematicae, Tome 79 (1999) pp. 203-210. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv79z2p203bwm/
[000] [1] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.
[001] [2] S. Berman, B. Moody and M. Wonenburger, Cartan martices with null roots and finite Cartan matrices, Indiana Univ. Math. J. 21 (1972), 1091-1099. | Zbl 0245.17005
[002] [3] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Representation Theory I, Lecture Notes in Math. 831, Springer, 1980, 1-71.
[003] [4] D. Happel, U. Preiser and C. M. Ringel, Vinberg's characterization of Dynkin diagrams with subadditive functions with applications to DTr-periodic modules, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 280-294. | Zbl 0446.16032
[004] [5] C. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), 199-224.
[005] [6] C. M. Ringel, Finite dimensional hereditary algebras of wild representation type, Math. Z. 161 (1978), 235-255. | Zbl 0415.16023
[006] [7] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
[007] [8] Y. Zhang, The modules in any component of the AR-quiver of a wild hereditary artin algebra are uniquely determined by their composition factors, Arch. Math. (Basel) 53 (1989), 250-251 | Zbl 0651.16013