Let X be a reflexive Banach space and (Ω,Σ,μ) be a σ-finite measure space. Let d ≥ 1 be an integer and T=T(u):u=(, ... ,, ≥ 0, 1 ≤ i ≤ d be a strongly measurable d-parameter semigroup of linear contractions on ((Ω,Σ,μ);X). We assume that to each T(u) there corresponds a positive linear contraction P(u) defined on ((Ω,Σ,μ);ℝ) with the property that ∥ T(u)f(ω)∥ ≤ P(u)∥f(·)∥(ω) almost everywhere on Ω for all f ∈ ((Ω,Σ,μ);X). We then prove stochastic and pointwise ergodic theorems for a d-parameter bounded additive process F in ((Ω,Σ,μ);X) with respect to the semigroup T.
@article{bwmeta1.element.bwnjournal-article-cmv79z2p193bwm, author = {Ryotaro Sato}, title = {Vector-valued ergodic theorems for multiparameter additive processes}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {193-202}, zbl = {0947.47005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv79z2p193bwm} }
Sato, Ryotaro. Vector-valued ergodic theorems for multiparameter additive processes. Colloquium Mathematicae, Tome 79 (1999) pp. 193-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv79z2p193bwm/
[000] [1] N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, Interscience, New York, 1958. | Zbl 0084.10402
[001] [2] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
[002] [3] A. M. Garsia, Topics in Almost Everywhere Convergence, Markham, Chicago, 1970. | Zbl 0198.38401
[003] [4] S. Hasegawa and R. Sato, On d-parameter pointwise ergodic theorems in , Proc. Amer. Math. Soc. 123 (1995), 3455-3465. | Zbl 0849.47007
[004] [5] S. Hasegawa and R. Sato, On a d-parameter ergodic theorem for continuous semigroups of operators satisfying norm conditions, Comment. Math. Univ. Carolin. 38 (1997), 453-462. | Zbl 0937.47009
[005] [6] S. Hasegawa, R. Sato and S. Tsurumi, Vector valued ergodic theorems for a one-parameter semigroup of linear operators, Tôhoku Math. J. 30 (1978), 95-106. | Zbl 0377.47008
[006] [7] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
[007] [8] R. Sato, Vector valued differentiation theorems for multiparameter additive processes in spaces, Positivity 2 (1998), 1-18. | Zbl 0915.47012