@article{bwmeta1.element.bwnjournal-article-cmv79z2p185bwm, author = {George Gr\"atzer and Friedrich Wehrung}, title = {Flat semilattices}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {185-191}, zbl = {0922.06006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv79z2p185bwm} }
Grätzer, George; Wehrung, Friedrich. Flat semilattices. Colloquium Mathematicae, Tome 79 (1999) pp. 185-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv79z2p185bwm/
[000] [1] J. Anderson and N. Kimura, The tensor product of semilattices, Semigroup Forum 16 (1978), 83-88. | Zbl 0387.20044
[001] [2] G. Fraser, The tensor product of semilattices, Algebra Universalis 8 (1978), 1-3. | Zbl 0474.06005
[002] [3] K. R. Goodearl and F. Wehrung, Representations of distributive semilattices by dimension groups, regular rings, -algebras, and complemented modular lattices, submitted for publication, 1997.
[003] [4] G. Grätzer, General Lattice Theory, 2nd ed., Birkhäuser, Basel, 1998. | Zbl 0909.06002
[004] [5] G. Grätzer, H. Lakser and R. W. Quackenbush, The structure of tensor products of semilattices with zero, Trans. Amer. Math. Soc. 267 (1981), 503-515. | Zbl 0478.06003
[005] [6] G. Grätzer and F. Wehrung, Tensor products of semilattices with zero, revisited, J. Pure Appl. Algebra, to appear. | Zbl 0945.06003
[006] [7] G. Grätzer and F. Wehrung, Tensor products and transferability of semilattices, submitted for publication, 1998.
[007] [8] P. Pudlák, On congruence lattices of lattices, Algebra Universalis 20 (1985), 96-114. | Zbl 0562.06005
[008] [9] R. W. Quackenbush, Non-modular varieties of semimodular lattices with a spanning , Discrete Math. 53 (1985), 193-205. | Zbl 0558.06005
[009] [10] E. T. Schmidt, Zur Charakterisierung der Kongruenzverbände der Verbände, Mat. Časopis Sloven. Akad. Vied 18 (1968), 3-20. | Zbl 0155.35102