Geometry of modules over tame quasi-tilted algebras
Bobiński, Grzegorz ; Skowroński, Andrzej
Colloquium Mathematicae, Tome 79 (1999), p. 85-118 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210630
@article{bwmeta1.element.bwnjournal-article-cmv79z1p85bwm,
     author = {Grzegorz Bobi\'nski and Andrzej Skowro\'nski},
     title = {Geometry of modules over tame quasi-tilted algebras},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {85-118},
     zbl = {0994.16009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv79z1p85bwm}
}
Bobiński, Grzegorz; Skowroński, Andrzej. Geometry of modules over tame quasi-tilted algebras. Colloquium Mathematicae, Tome 79 (1999) pp. 85-118. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv79z1p85bwm/

[000] [1] I. Assem, A. Skowroński and B. Tomé, Coil enlargements of algebras, Tsukuba J. Math. 19 (1995), 453-479. | Zbl 0860.16014

[001] [2] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1994.

[002] [3] G. Bobiński and A. Skowroński, Geometry of directing modules over tame algebras, preprint, Toruń, 1998. | Zbl 0965.16009

[003] [4] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1983), 461-469. | Zbl 0532.16020

[004] [5] K. Bongartz, A geometric version of the Morita equivalence, J. Algebra 139 (1991), 159-171. | Zbl 0787.16011

[005] [6] K. Bongartz, Minimal singularites of Dynkin quivers, Comment. Math. Helv. 69 (1994), 575-611. | Zbl 0832.16008

[006] [7] K. Bongartz, On degenerations and extensions of finite dimensional modules, Adv. Math. 121 (1996), 245-287. | Zbl 0862.16007

[007] [8] K. Bongartz, Some geometric aspects of representation theory, in: Proc. Workshop ICRA VIII (Trondheim 1996), CMS Conf. Proc., in press. | Zbl 0915.16008

[008] [9] C. de Concini and E. Strickland, On the variety of complexes, Adv. Math. 41 (1981), 57-77. | Zbl 0471.14026

[009] [10] W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56 (1988), 451-483. | Zbl 0661.16026

[010] [11] D Yu. A. Drozd, Tame and wild matrix problems, in: Lecture Notes in Math. 832, Springer, 1980, 242-258.

[011] [12] D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, Grad. Texts in Math. 150, Springer, 1996.

[012] [13] P. Gabriel, Finite representation type is open, in: Lecture Notes in Math. 488, Springer, 1975, 132-155.

[013] [14] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Lecture Notes in Math. 831, Springer, 1979, 1-71.

[014] [15] D. Happel, I. Reiten and S. O. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996). | Zbl 0849.16011

[015] [16] R. Hartshorne, Introduction to Algebraic Geometry, Springer, 1977. | Zbl 0367.14001

[016] [17] V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), 57-92. | Zbl 0427.17001

[017] [18] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47. | Zbl 0675.16013

[018] [19] H. Kraft, Geometrische Methoden in der Invariantentheorie, Vieweg, 1984.

[019] [20] H. Kraft, Geometric methods in representation theory, in: Lecture Notes in Math. 944, Springer, 1981, 180-258.

[020] [21] H. Kraft and C. Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1978), 227-247. | Zbl 0434.14026

[021] [22] H. Lenzing and J. A. de la Peña, Concealed-canonical algebras and separating tubular families, Proc. London Math. Soc., in press. | Zbl 1035.16009

[022] [23] J. A. de la Peña, On the dimension of the module-varieties of tame and wild algebras, Comm. Algebra 19 (1991), 1795-1807. | Zbl 0818.16013

[023] [24] J. A. de la Peña, Tame algebras with sincere directing modules, J. Algebra 161 (1993), 171-185. | Zbl 0808.16018

[024] [25] J. A. de la Peña, The families of two-parametric tame algebras with sincere directing modules, in: CMS Conf. Proc. 14 (1993), 361-392. | Zbl 0799.16016

[025] [26] J. A. de la Peña and A. Skowroński, Geometric and homological characterizations of polynomial growth strongly simply connected algebras, Invent. Math. 126 (1996), 287-296. | Zbl 0883.16007

[026] [27] C. M. Ringel, The rational invariants of the tame quivers, Invent. Math. 58 (1980), 217-239. | Zbl 0433.15009

[027] [28] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.

[028] [29] I. R. Shafarevich, Basic Algebraic Geometry, Grad. Texts in Math. 213, Springer, 1977.

[029] [30] A. Skowroński, Tame quasi-tilted algebras, J. Algebra 203 (1998), 470-490. | Zbl 0908.16013

[030] [31] A. Skowroński and G. Zwara, Degenerations for indecomposable modules and tame algebras, Ann. Sci. École Norm. Sup. 31 (1998), 153-180. | Zbl 0915.16011

[031] [32] D. Voigt, Induzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen, Lecture Notes in Math. 336, Springer, 1977. | Zbl 0374.14010

[032] [33] G. Zwara, Degenerations of finite dimensional modules are given by extensions, preprint, Toruń, 1998.