@article{bwmeta1.element.bwnjournal-article-cmv79z1p63bwm, author = {Mohammed Aassila}, title = {Uniform boundary stabilization of a thermoelastic bar with a nonlinear weak damping}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {63-70}, zbl = {1101.35393}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv79z1p63bwm} }
Aassila, Mohammed. Uniform boundary stabilization of a thermoelastic bar with a nonlinear weak damping. Colloquium Mathematicae, Tome 79 (1999) pp. 63-70. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv79z1p63bwm/
[000] [1] Aassila M., Nouvelle approche à la stabilisation forte des systèmes distribués, C. R. Acad. Sci. Paris 324 (1997), 43-48.
[001] [2] Aassila M. , Strong asymptotic stability for n-dimensional thermoelasticity systems, Colloq. Math. 77 (1998), 133-139. | Zbl 0958.35012
[002] [3] Ammar Khodja F., Benabdallah A. et Teniou D., Stabilisation d'un système similaire à celui de la thermoélasticité, C. R. Acad. Sci. Paris 322 (1996), 551-556. | Zbl 0847.35015
[003] [4] Burns J., Liu Z. and Zheng S., On the energy decay of a thermoelastic bar, J. Anal. Math. Appl. 179 (1993), 574-591. | Zbl 0803.35150
[004] [5] Dafermos C. M., On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity, Arch. Rational Mech. Anal. 29 (1968), 241-271. | Zbl 0183.37701
[005] [6] Gibson J. S., Rosen I. G. and Tao G., Approximation in control of thermolastic systems, SIAM J. Control Optim. 30 (1992), 1163-1189. | Zbl 0762.93051
[006] [7] Hansen S. W., Exponential energy decay in a linear thermoelastic rod, J. Math. Anal. Appl. 167 (1992), 429-442. | Zbl 0755.73012
[007] [8] Huang F. L., Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations 1 (1985), 43-48.
[008] [9] Jiang S., Global existence of smooth solutions in one-dimensional nonlinear thermoelasticity, Proc. Roy. Soc. Edinburgh 115 (1990), 257-274. | Zbl 0723.35044
[009] [10] Jiang S. , Global solution of the Neumann problem in one-dimensional nonlinear thermoelasticity, Nonlinear Anal. 19 (1992), 107-121. | Zbl 0770.73009
[010] [11] Kim J. U., On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal. 23 (1992), 889-899. | Zbl 0755.73013
[011] [12] Komornik V., Exact Controllability and Stabilization, the Multiplier Method, Masson, Paris, 1994. | Zbl 0937.93003
[012] [13] Komornik V. and Zuazua E., A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. 69 (1990), 33-54. | Zbl 0636.93064
[013] [14] Liu Z. Y. and Zheng S., Exponential stability of semi-group associated with thermoelastic system, Quart. Appl. Math. 51 (1993), 535-545. | Zbl 0803.35014
[014] [15] Muñoz Rivera J. E., Energy decay rate in linear thermoelasticity, Funkcial. Ekvac. 35 (1992), 19-30. | Zbl 0838.73006
[015] [16] Ponce G. and Racke R., Global existence of small solutions to the initial value problem for nonlinear thermoelasticity, J. Differential Equations 87 (1990), 70-83. | Zbl 0725.35065
[016] [17] Racke R. and Shibata Y., Global smooth solutions and asymptotic stability in one-dimensional thermoelasticity, Arch. Rational Mech. Anal. 116 (1992), 1-34. | Zbl 0756.73012
[017] [18] Shibata Y., Neumann problem for one-dimensional nonlinear thermoelasticity, in: Banach Center Publ. 27, Inst. Math., Polish Acad. Sci., 1990, 457-480. | Zbl 0802.35147
[018] [19] Slemrod M., Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity, Arch. Rational Mech. Anal. 76 (1981), 97-133. | Zbl 0481.73009