The blow-up solutions of integral equations
Mydlarczyk, Wojciech
Colloquium Mathematicae, Tome 79 (1999), p. 147-156 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210622
@article{bwmeta1.element.bwnjournal-article-cmv79z1p147bwm,
     author = {Wojciech Mydlarczyk},
     title = {The blow-up solutions of integral equations},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {147-156},
     zbl = {0919.45003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv79z1p147bwm}
}
Mydlarczyk, Wojciech. The blow-up solutions of integral equations. Colloquium Mathematicae, Tome 79 (1999) pp. 147-156. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv79z1p147bwm/

[000] [1] P. J. Bushell and W. Okrasiński, Uniqueness for a class of non-linear Volterra integral equations with convolution kernel, Math. Proc. Cambridge Philos. Soc. 106 (1989), 547-552. | Zbl 0689.45013

[001] [2] J. A. Dilellio and W. E. Olmstead, Shear band formation due to thermal flux inhomogeneity, SIAM J. Appl. Math. 57 (1997), 959-971. | Zbl 0886.41026

[002] [3] G. Gripenberg, S. O. Londen and O. Staffans, Volterra Integral and Functional Equations, Cambridge Univ. Press, 1990. | Zbl 0695.45002

[003] [4] W. Mydlarczyk, The existence of nontrivial solutions of Volterra equations, Math. Scand. 68 (1991), 83-88. | Zbl 0701.45002

[004] [5] W. Mydlarczyk, A condition for finite blow-up time for a Volterra equation, J. Math. Anal. Appl. 181 1994 248-253. | Zbl 0808.45008

[005] [6] W. E. Olmstead, C. A. Roberts and K. Deng, Coupled Volterra equations with blow-up solutions, J. Integral Equations Appl. 7 (1995), 499-516. | Zbl 0847.45006

[006] [7] C. A. Roberts, D. G. Lasseigne and W. E. Olmstead, Volterra equations which model explosion in a diffusive medium, ibid. 5 (1993), 531-546. | Zbl 0804.45002