@article{bwmeta1.element.bwnjournal-article-cmv79z1p133bwm, author = {C. Elsner}, title = {On arithmetic properties of the convergents of Euler's number}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {133-145}, zbl = {0930.11048}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv79z1p133bwm} }
Elsner, C. On arithmetic properties of the convergents of Euler's number. Colloquium Mathematicae, Tome 79 (1999) pp. 133-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv79z1p133bwm/
[000] [1] H. Alzer, On rational approximations to e, J. Number Theory 68 (1998), 57-62. | Zbl 0913.11029
[001] [2] C. Elsner, On the approximation of irrational numbers with rationals restricted by congruence relations, Fibonacci Quart. 34 (1996), 18-29.
[002] [3] C. Elsner, A metric result concerning the approximation of real numbers by continued fractions, ibid. 36 (1998), 290-294. | Zbl 0933.11038
[003] [4] C. Elsner, On the approximation of irrationals by rationals, Math. Nachr. 189 (1998), 243-256. | Zbl 0896.11027
[004] [5] L. Euler, De fractionibus continuis, Commentarii Academiae Scientiarum Imperialis Petropolitanae, 1737.
[005] [6] S. Hartman, Sur une condition supplémentaire dans les approximations diophantiques, Colloq. Math. 2 (1949), 48-51. | Zbl 0038.18802
[006] [7] M. Hata, A lower bound for rational approximations to π, J. Number Theory 43 (1993), 51-67.
[007] [8] M. Hata, Improvement in the irrationality measures of π and π^2 , Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), 283-286.
[008] [9] C. Hermite, Sur la fonction exponentielle, C. R. Acad. Sci. Paris 77 (1873), 18-24, 74-79, 226-233, 285-293.
[009] [10] C. L. F. von Lindemann, Über die Zahl π, Math. Ann. 20 (1882), 213-225.
[010] [11] K. Mahler, On the approximation of π, Proc. Akad. Wetensch. Ser. A 56 (1953), 30-42. | Zbl 0053.36105
[011] [12] K. R. Matthews and R. F. C. Walters, Some properties of the continued fraction expansion of , Proc. Cambridge Philos. Soc. 67 (1970), 67-74. | Zbl 0188.10703
[012] [13] O. Perron, Die Lehre von den Kettenbrüchen, Chelsea, New York, 1950. | Zbl 0041.18206
[013] [14] T. Schneider, Einführung in die transzendenten Zahlen, Springer, Berlin, 1957. | Zbl 0077.04703
[014] [15] A. B. Shidlovskiĭ, Transcendental Numbers, de Gruyter, Berlin, 1989.
[015] [16] S. Uchiyama, On rational approximations to irrational numbers, Tsukuba J. Math. 4 (1980), 1-7. | Zbl 0467.10023