On arithmetic properties of the convergents of Euler's number
Elsner, C.
Colloquium Mathematicae, Tome 79 (1999), p. 133-145 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210621
@article{bwmeta1.element.bwnjournal-article-cmv79z1p133bwm,
     author = {C. Elsner},
     title = {On arithmetic properties of the convergents of Euler's number},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {133-145},
     zbl = {0930.11048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv79z1p133bwm}
}
Elsner, C. On arithmetic properties of the convergents of Euler's number. Colloquium Mathematicae, Tome 79 (1999) pp. 133-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv79z1p133bwm/

[000] [1] H. Alzer, On rational approximations to e, J. Number Theory 68 (1998), 57-62. | Zbl 0913.11029

[001] [2] C. Elsner, On the approximation of irrational numbers with rationals restricted by congruence relations, Fibonacci Quart. 34 (1996), 18-29.

[002] [3] C. Elsner, A metric result concerning the approximation of real numbers by continued fractions, ibid. 36 (1998), 290-294. | Zbl 0933.11038

[003] [4] C. Elsner, On the approximation of irrationals by rationals, Math. Nachr. 189 (1998), 243-256. | Zbl 0896.11027

[004] [5] L. Euler, De fractionibus continuis, Commentarii Academiae Scientiarum Imperialis Petropolitanae, 1737.

[005] [6] S. Hartman, Sur une condition supplémentaire dans les approximations diophantiques, Colloq. Math. 2 (1949), 48-51. | Zbl 0038.18802

[006] [7] M. Hata, A lower bound for rational approximations to π, J. Number Theory 43 (1993), 51-67.

[007] [8] M. Hata, Improvement in the irrationality measures of π and π^2 , Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), 283-286.

[008] [9] C. Hermite, Sur la fonction exponentielle, C. R. Acad. Sci. Paris 77 (1873), 18-24, 74-79, 226-233, 285-293.

[009] [10] C. L. F. von Lindemann, Über die Zahl π, Math. Ann. 20 (1882), 213-225.

[010] [11] K. Mahler, On the approximation of π, Proc. Akad. Wetensch. Ser. A 56 (1953), 30-42. | Zbl 0053.36105

[011] [12] K. R. Matthews and R. F. C. Walters, Some properties of the continued fraction expansion of (m/n)e1/q, Proc. Cambridge Philos. Soc. 67 (1970), 67-74. | Zbl 0188.10703

[012] [13] O. Perron, Die Lehre von den Kettenbrüchen, Chelsea, New York, 1950. | Zbl 0041.18206

[013] [14] T. Schneider, Einführung in die transzendenten Zahlen, Springer, Berlin, 1957. | Zbl 0077.04703

[014] [15] A. B. Shidlovskiĭ, Transcendental Numbers, de Gruyter, Berlin, 1989.

[015] [16] S. Uchiyama, On rational approximations to irrational numbers, Tsukuba J. Math. 4 (1980), 1-7. | Zbl 0467.10023