Algebras whose Euler form is non-negative
Barot, M. ; de la Peña, J.
Colloquium Mathematicae, Tome 79 (1999), p. 119-131 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210620
@article{bwmeta1.element.bwnjournal-article-cmv79z1p119bwm,
     author = {M. Barot and J. de la Pe\~na},
     title = {Algebras whose Euler form is non-negative},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {119-131},
     zbl = {0942.16019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv79z1p119bwm}
}
Barot, M.; de la Peña, J. Algebras whose Euler form is non-negative. Colloquium Mathematicae, Tome 79 (1999) pp. 119-131. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv79z1p119bwm/

[000] [1] I. Assem and A. Skowroński, Quadratic forms and iterated tilted algebras, J. Algebra 128 (1990), 55-85. | Zbl 0686.16020

[001] [2] M. Barot and H. Lenzing, One-point extensions and derived equivalence, to appear.

[002] [3] M. Barot and J. A. de la Peña, Derived tubular strongly simply connected algebras, Proc. Amer. Math. Soc., to appear. | Zbl 0940.16008

[003] [4] M. Barot and J. A. de la Peña, Derived tubularity: A computational approach, in: Proc. Euroconference on Computer Algebra for Representations of Groups and Algebras, to appear. | Zbl 1058.16504

[004] [5] M. Barot and J. A. de la Peña, The Dynkin-type of a non-negative unit form, to appear. | Zbl 1073.15531

[005] [6] R. Bautista, F. Larrión and L. Salmerón, On simply connected algebras, J. London Math. Soc. (2) 27 (1983), 212-220. | Zbl 0511.16022

[006] [7] P. Dräxler, Completely separating algebras, J. Algebra 165 (1994), 550-565. | Zbl 0804.16017

[007] [8] P. Dräxler and J. A. de la Peña, Tree algebras with non-negative Tits form, preprint, México, 1996. | Zbl 0964.16013

[008] [9] C. Geiß and J. A. de la Peña, Algebras derived tame to semichain poset algebras, in preparation.

[009] [10] P. Gabriel, B. Keller and A. V. Roiter, Algebra VIII. Representations of Finite-Dimensional Algebras, Encyclopaedia Math. Sci. 73, Springer, 1992.

[010] [11] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1988. | Zbl 0635.16017

[011] [12] D. Happel and C. M. Ringel, The derived category of a tubular algebra, in: Representation Theory I, Lecture Notes in Math. 1177, Springer, 1984, 156-180.

[012] [13] S. A. Ovsienko, Integer weakly positive forms, in: Schurian Matrix Problems and Quadratic Forms, Kiev, 1978, 3-17.

[013] [14] J. A. de la Peña, On the representation type of one point extensions of tame concealed algebras, Manuscripta Math. 61 (1988), 183-194. | Zbl 0647.16021

[014] [15] J. A. de la Peña, On the corank of the Tits form of a tame algebra, J. Pure Appl. Algebra 107 (1996), 89-105. | Zbl 0851.16014

[015] [16] J. A. de la Peña, Derived-tame algebras, preprint, México, 1998. | Zbl 0932.16005

[016] [17] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.

[017] [18] A. Skowroński, Simply connected algebras and Hochschild cohomologies, in: CMS Proc. 14, Amer. Math. Soc., 1993, 431-447. | Zbl 0806.16012