We prove that, for a sequence of positive numbers δ(n), if as , to guarantee that the modified Szász-Mirakjan operators converge to f(x) at every point, f must be identically zero.
@article{bwmeta1.element.bwnjournal-article-cmv79i2p157bwm, author = {Guanzhen Zhou and Songping Zhou}, title = {A remark on a modified Sz\'asz-Mirakjan operator}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {157-160}, zbl = {0922.41013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv79i2p157bwm} }
Zhou, Guanzhen; Zhou, Songping. A remark on a modified Szász-Mirakjan operator. Colloquium Mathematicae, Tome 79 (1999) pp. 157-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv79i2p157bwm/
[000] [1] J. Gróf, Über Approximation durch Polynome mit Belegungsfunktion, Acta Math. Acad. Sci. Hungar. 35 (1980), 109-116. | Zbl 0452.41017
[001] [2] T. Hermann, Approximation of unbounded functions on unbounded interval, ibid. 29 (1977), 393-398. | Zbl 0371.41012
[002] [3] H. G. Lehnhoff, On a modified Szász-Mirakjan-operator, J. Approx. Theory 42 (1984), 278-282. | Zbl 0573.41034
[003] [3] X. H. Sun, On the convergence of the modified Szász-Mirakjan operator, Approx. Theory Appl. 10 (1994), no. 1, 20-25.