Let X be a connected graph with uniformly bounded degree. We show that if there is a radius r such that, by removing from X any ball of radius r, we get at least three unbounded connected components, then X satisfies a strong isoperimetric inequality. In particular, the non-reduced -cohomology of X coincides with the reduced -cohomology of X and is of uncountable dimension. (Those facts are well known when X is the Cayley graph of a finitely generated group with infinitely many ends.)
@article{bwmeta1.element.bwnjournal-article-cmv78z2p307bwm, author = {Christophe Pittet}, title = {On the isoperimetry of graphs with many ends}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {307-318}, zbl = {0923.05028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv78z2p307bwm} }
Pittet, Christophe. On the isoperimetry of graphs with many ends. Colloquium Mathematicae, Tome 78 (1998) pp. 307-318. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv78z2p307bwm/
[000] [ABCKT] J. Amorós, M. Burger, K. Corlette, D. Kotschick and D. Toledo, Fundamental Groups of Compact Kähler Manifolds, Math. Surveys and Monographs 44, Amer. Math. Soc., 1996. | Zbl 0849.32006
[001] [Av] A. Avez, Variétés Riemanniennes sans points focaux, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), 188-191. | Zbl 0188.26402
[002] [CGH] T. Ceccherini-Silberstein, R. Grigorchuk and P. de la Harpe, Amenability and paradoxes for pseudogroups and for discrete metric spaces, preprint, Université de Genève, 1997. | Zbl 0968.43002
[003] [Du] M. Dunwoody, Cutting up graphs, Combinatorica 2 (1982), 15-23. | Zbl 0504.05035
[004] [Ge] P. Gerl, Random walks on graphs with a strong isoperimetric property, J. Theoret. Probab. 1 (1988), 171-188. | Zbl 0639.60072
[005] [Gr89] M. Gromov, Sur le groupe fondamental d'une variété kählerienne, C. R. Acad. Sci. Paris Sér. I 308 (1989), 67-70. | Zbl 0661.53049
[006] [Gr] M. Gromov, Asymptotic invariants of infinite groups, in: G. A. Niblo and M. A. Roller (eds.), Geometric Group Theory, Vol. 2, London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press, 1993.
[007] [GLP] M. Gromov, J. Lafontaine et P. Pansu, Structures métriques pour les variétés riemanniennes, Textes Mathématiques, Cedic, Fernand Nathan, 1981.
[008] [Ka] M. Kanai, Rough isometries and combinatorial approximations of geometries of non-compact Riemannian manifolds, J. Math. Soc. Japan 37 (1985), 391-413. | Zbl 0554.53030
[009] [Kri] V. Krishnamurty, Combinatorics, Theory and Applications, EWP PVT, New Delhi, 1985.
[010] [Pi] C. Pittet, Fοlner sequences in polycyclic groups, Rev. Mat. Iberoamericana 11 (1995), 675-685. | Zbl 0842.20035
[011] [St] J. Stallings, Group Theory and Three-Dimensional Manifolds, Yale Math. Monographs 4, Yale Univ. Press, 1971. | Zbl 0241.57001
[012] [SW] P. Soardi and W. Woess, Amenability, unimodularity, and the spectral radius of random walks on infinite graphs, Math. Z. 205 (1990), 471-486. | Zbl 0693.43001