On the isoperimetry of graphs with many ends
Pittet, Christophe
Colloquium Mathematicae, Tome 78 (1998), p. 307-318 / Harvested from The Polish Digital Mathematics Library

Let X be a connected graph with uniformly bounded degree. We show that if there is a radius r such that, by removing from X any ball of radius r, we get at least three unbounded connected components, then X satisfies a strong isoperimetric inequality. In particular, the non-reduced l2-cohomology of X coincides with the reduced l2-cohomology of X and is of uncountable dimension. (Those facts are well known when X is the Cayley graph of a finitely generated group with infinitely many ends.)

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210617
@article{bwmeta1.element.bwnjournal-article-cmv78z2p307bwm,
     author = {Christophe Pittet},
     title = {On the isoperimetry of graphs with many ends},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {307-318},
     zbl = {0923.05028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv78z2p307bwm}
}
Pittet, Christophe. On the isoperimetry of graphs with many ends. Colloquium Mathematicae, Tome 78 (1998) pp. 307-318. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv78z2p307bwm/

[000] [ABCKT] J. Amorós, M. Burger, K. Corlette, D. Kotschick and D. Toledo, Fundamental Groups of Compact Kähler Manifolds, Math. Surveys and Monographs 44, Amer. Math. Soc., 1996. | Zbl 0849.32006

[001] [Av] A. Avez, Variétés Riemanniennes sans points focaux, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), 188-191. | Zbl 0188.26402

[002] [CGH] T. Ceccherini-Silberstein, R. Grigorchuk and P. de la Harpe, Amenability and paradoxes for pseudogroups and for discrete metric spaces, preprint, Université de Genève, 1997. | Zbl 0968.43002

[003] [Du] M. Dunwoody, Cutting up graphs, Combinatorica 2 (1982), 15-23. | Zbl 0504.05035

[004] [Ge] P. Gerl, Random walks on graphs with a strong isoperimetric property, J. Theoret. Probab. 1 (1988), 171-188. | Zbl 0639.60072

[005] [Gr89] M. Gromov, Sur le groupe fondamental d'une variété kählerienne, C. R. Acad. Sci. Paris Sér. I 308 (1989), 67-70. | Zbl 0661.53049

[006] [Gr] M. Gromov, Asymptotic invariants of infinite groups, in: G. A. Niblo and M. A. Roller (eds.), Geometric Group Theory, Vol. 2, London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press, 1993.

[007] [GLP] M. Gromov, J. Lafontaine et P. Pansu, Structures métriques pour les variétés riemanniennes, Textes Mathématiques, Cedic, Fernand Nathan, 1981.

[008] [Ka] M. Kanai, Rough isometries and combinatorial approximations of geometries of non-compact Riemannian manifolds, J. Math. Soc. Japan 37 (1985), 391-413. | Zbl 0554.53030

[009] [Kri] V. Krishnamurty, Combinatorics, Theory and Applications, EWP PVT, New Delhi, 1985.

[010] [Pi] C. Pittet, Fοlner sequences in polycyclic groups, Rev. Mat. Iberoamericana 11 (1995), 675-685. | Zbl 0842.20035

[011] [St] J. Stallings, Group Theory and Three-Dimensional Manifolds, Yale Math. Monographs 4, Yale Univ. Press, 1971. | Zbl 0241.57001

[012] [SW] P. Soardi and W. Woess, Amenability, unimodularity, and the spectral radius of random walks on infinite graphs, Math. Z. 205 (1990), 471-486. | Zbl 0693.43001