On the formal inverse of polynomial endomorphisms
Ossowski, Piotr
Colloquium Mathematicae, Tome 78 (1998), p. 97-104 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210608
@article{bwmeta1.element.bwnjournal-article-cmv78z1p97bwm,
     author = {Piotr Ossowski},
     title = {On the formal inverse of polynomial endomorphisms},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {97-104},
     zbl = {0942.13012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv78z1p97bwm}
}
Ossowski, Piotr. On the formal inverse of polynomial endomorphisms. Colloquium Mathematicae, Tome 78 (1998) pp. 97-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv78z1p97bwm/

[000] [1] H. Bass, E. H. Connell and D. Wright, The Jacobian conjecture: Reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 287-330. | Zbl 0539.13012

[001] [2] L. M. Drużkowski and K. Rusek, The formal inverse and the Jacobian conjecture, Ann. Polon. Math. 46 (1985), 85-90. | Zbl 0644.12010

[002] [3] G. Gorni and G. Zampieri, Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse, Ann. Polon. Math. 64 (1996), 285-290. | Zbl 0868.12001

[003] [4] P. Ossowski, A counterexample to a conjecture of Bass, Connell and Wright, Colloq. Math. 77 (1998), 315-320. | Zbl 0942.13011

[004] [5] V. L. Popov and E. B. Vinberg, Invariant theory, in: Algebraic Geometry IV, Encyclopaedia Math. Sci. 55, Springer, 1994, 123-278.

[005] [6] C. E. Praeger and P. Schultz, On the automorphisms of rooted trees with height distributions, in: Combinatorial Mathematics X (Adelaide, 1982), Lecture Notes in Math. 1036, Springer, 1983, 319-334.

[006] [7] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge Stud. Adv. Math. 49, Cambridge Univ. Press, 1997.

[007] [8] D. Wright, Formal inverse expansion and the Jacobian conjecture, J. Pure Appl. Algebra 48 (1987), 199-219. | Zbl 0666.12017

[008] [9] A. V. Yagzhev, On Keller's problem, Sibirsk. Mat. Zh. 21 (1980), no. 5, 141-150 (in Russian). | Zbl 0466.13009