A note on Schrödinger operators with polynomial potentials
Dziubański, Jacek
Colloquium Mathematicae, Tome 78 (1998), p. 149-161 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210599
@article{bwmeta1.element.bwnjournal-article-cmv78z1p149bwm,
     author = {Jacek Dziuba\'nski},
     title = {A note on Schr\"odinger operators with polynomial potentials},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {149-161},
     zbl = {0919.43005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv78z1p149bwm}
}
Dziubański, Jacek. A note on Schrödinger operators with polynomial potentials. Colloquium Mathematicae, Tome 78 (1998) pp. 149-161. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv78z1p149bwm/

[000] [D] J. Dziubański, A remark on a Marcinkiewicz-Hörmander multiplier theorem for some non-differential convolution operators, Colloq. Math. 58 (1989), 77-83. | Zbl 0711.43003

[001] [D1] J. Dziubański, Schwartz spaces associated with some non-differential convolution operators on homogeneous groups, ibid. 63 (1992), 153-161.

[002] [DHJ] J. Dziubański, A. Hulanicki and J. Jenkins, A nilpotent Lie algebra and eigenvalue estimates, ibid. 68 (1995), 7-16. | Zbl 0837.43012

[003] [E] J. Epperson, Triebel-Lizorkin spaces for Hermite expansions, Studia Math. 114 (1995), 87-103. | Zbl 0828.42017

[004] [FeS] C. Fefferman and E. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115. | Zbl 0222.26019

[005] [FS] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982. | Zbl 0508.42025

[006] [G] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non-graded homogeneous groups, Invent. Math. 83 (1986), 557-582. | Zbl 0595.43006

[007] [G1] P. Głowacki, The Rockland condition for nondifferential convolution operators II, Studia Math. 98 (1991), 99-114. | Zbl 0737.43002

[008] [He] W. Hebisch, On operators satisfying the Rockland condition, ibid. 131 (1998), 63-71.

[009] [P] J. Peetre, On space of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123-130. | Zbl 0302.46021

[010] [Sh] Z. Shen, Lp estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546. | Zbl 0818.35021

[011] [Z] J. Zhong, Harmonic analysis for some Schrödinger operators, Ph.D. thesis, Princeton Univ., 1993.