An elementary proof of the Weitzenböck Theorem
Tyc, Andrzej
Colloquium Mathematicae, Tome 78 (1998), p. 123-132 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210597
@article{bwmeta1.element.bwnjournal-article-cmv78z1p123bwm,
     author = {Andrzej Tyc},
     title = {An elementary proof of the Weitzenb\"ock Theorem},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {123-132},
     zbl = {0940.13002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv78z1p123bwm}
}
Tyc, Andrzej. An elementary proof of the Weitzenböck Theorem. Colloquium Mathematicae, Tome 78 (1998) pp. 123-132. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv78z1p123bwm/

[000] [1] W. Bruns and J. Herzog, z Cohen-Macaulay Rings, Cambridge Stud. Adv. Math. 39, Cambridge Univ. Press, 1993.

[001] [2] J. E. Humphreys, z Introduction to Lie Algebras and Representation Theory, Grad. Texts in Math. 9, Springer, New York, 1972.

[002] [3] A. Nowicki, z Polynomial Derivations and Their Rings of Constants, University Press, Toruń, 1994.

[003] [4] N. Onoda, z Linear actions of Ga on polynomial rings, in: Proc. 25th Sympos. Ring Theory (Matsumoto, 1992), Okayama Univ., Okayama, 1992, 11-16.

[004] [5] V. L. Popov, z Finiteness theorem for representations with a free algebra of invariants, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 347-370 (in Russian).

[005] [6] C. S. Seshadri, z On a theorem of Weitzenböck in invariant theory, J. Math. Kyoto Univ. 1 (1961), 403-409. | Zbl 0112.25402

[006] [7] T. A. Springer, z Invariant Theory, Lecture Notes in Math. 585, Springer, New York, 1977.

[007] [8] R. Weitzenböck, z Über die Invarianten von linearen Gruppen, Acta Math. 58 (1932), 230-250.