@article{bwmeta1.element.bwnjournal-article-cmv78z1p123bwm, author = {Andrzej Tyc}, title = {An elementary proof of the Weitzenb\"ock Theorem}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {123-132}, zbl = {0940.13002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv78z1p123bwm} }
Tyc, Andrzej. An elementary proof of the Weitzenböck Theorem. Colloquium Mathematicae, Tome 78 (1998) pp. 123-132. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv78z1p123bwm/
[000] [1] W. Bruns and J. Herzog, z Cohen-Macaulay Rings, Cambridge Stud. Adv. Math. 39, Cambridge Univ. Press, 1993.
[001] [2] J. E. Humphreys, z Introduction to Lie Algebras and Representation Theory, Grad. Texts in Math. 9, Springer, New York, 1972.
[002] [3] A. Nowicki, z Polynomial Derivations and Their Rings of Constants, University Press, Toruń, 1994.
[003] [4] N. Onoda, z Linear actions of on polynomial rings, in: Proc. 25th Sympos. Ring Theory (Matsumoto, 1992), Okayama Univ., Okayama, 1992, 11-16.
[004] [5] V. L. Popov, z Finiteness theorem for representations with a free algebra of invariants, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 347-370 (in Russian).
[005] [6] C. S. Seshadri, z On a theorem of Weitzenböck in invariant theory, J. Math. Kyoto Univ. 1 (1961), 403-409. | Zbl 0112.25402
[006] [7] T. A. Springer, z Invariant Theory, Lecture Notes in Math. 585, Springer, New York, 1977.
[007] [8] R. Weitzenböck, z Über die Invarianten von linearen Gruppen, Acta Math. 58 (1932), 230-250.