A Hilbert cube compactification of the space of retractions of the interval
Uehara, Shigenori
Colloquium Mathematicae, Tome 78 (1998), p. 119-122 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210596
@article{bwmeta1.element.bwnjournal-article-cmv78z1p119bwm,
     author = {Shigenori Uehara},
     title = {A Hilbert cube compactification of the space of retractions of the interval},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {119-122},
     zbl = {0919.57013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv78z1p119bwm}
}
Uehara, Shigenori. A Hilbert cube compactification of the space of retractions of the interval. Colloquium Mathematicae, Tome 78 (1998) pp. 119-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv78z1p119bwm/

[000] [An] R. D. Anderson, A characterization of apparent boundaries of the Hilbert cube, Notices Amer. Math. Soc. 16 (1969), 429, Abstract #697-G17.

[001] [BS] V. N. Basmanov and A. G. Savchenko, Hilbert space as the space of retractions of an interval, Math. Notes 40 (1988), 563-566. | Zbl 0648.46023

[002] [Ch] T. A. Chapman, Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399-426. | Zbl 0208.51903

[003] [Fe] V. V. Fedorchuk, Completions of spaces of functions on compact spaces with respect to the Hausdorff uniformity, Trudy Sem. Petrovsk. 18 (1995), 213-235 (in Russian); English transl.: J. Math. Sci. 80 (1996), 2118-2129. | Zbl 0857.54020

[004] [SU1] K. Sakai and S. Uehara, A Hilbert cube compactification of the Banach space of continuous functions, Topology Appl., to appear. | Zbl 0926.54008

[005] [SU2] K. Sakai and S. Uehara, A Q-manifold compactification of the homeomorphism group of a graph, Bull. Polish Acad. Sci. Math. 45 (1997), 281-286. | Zbl 0886.57019

[006] [To] H. Toruńczyk, On CE-images of the Hilbert cube and characterization of Q-manifolds, Fund. Math. 106 (1980), 31-40.