The Grothendieck group of G-equivariant modules over coordinate rings of G-orbits
Klimek, J. ; Kraśkiewicz, W. ; Weyman, J.
Colloquium Mathematicae, Tome 78 (1998), p. 105-118 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210595
@article{bwmeta1.element.bwnjournal-article-cmv78z1p105bwm,
     author = {J. Klimek and W. Kra\'skiewicz and J. Weyman},
     title = {The Grothendieck group of G-equivariant modules over coordinate rings of G-orbits},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {105-118},
     zbl = {0920.20031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv78z1p105bwm}
}
Klimek, J.; Kraśkiewicz, W.; Weyman, J. The Grothendieck group of G-equivariant modules over coordinate rings of G-orbits. Colloquium Mathematicae, Tome 78 (1998) pp. 105-118. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv78z1p105bwm/

[000] [A] M. Aschbacher, The 27-dimensional module for E_6. I, Invent. Math. 89 (1987), 159-195. | Zbl 0629.20018

[001] [D] M. Demazure, A very simple proof of Bott's theorem, ibid. 33 (1976), 271-272. | Zbl 0383.14017

[002] [H-U] R. Howe and T. Umeda, The Capelli identity, the double commutant theorem, and multiplicity free actions, Math. Ann. 290 (1991), 565-619. | Zbl 0733.20019

[003] [I] J. Igusa, A classification of spinors up to dimension twelve, Amer. J. Math. 92 (1970), 997-1028. | Zbl 0217.36203

[004] [K] V. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190-213. | Zbl 0431.17007

[005] [W] J. Weyman, The Grothendieck group of GL(F)×GL(G)-equivariant modules over the coordinate ring of determinantal varietes, Colloq. Math. 76 (1998), 243-263. | Zbl 0945.13006