@article{bwmeta1.element.bwnjournal-article-cmv77z2p293bwm, author = {L. Zaj\'I\v cek}, title = {Small non-$\sigma$-porous sets in topologically complete metric spaces}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {293-304}, zbl = {0909.28001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv77z2p293bwm} }
ZajÍček, L. Small non-σ-porous sets in topologically complete metric spaces. Colloquium Mathematicae, Tome 78 (1998) pp. 293-304. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv77z2p293bwm/
[000] [1] E. P. Dolzhenko, Boundary properties of arbitrary functions, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 3-14 (in Russian).
[001] [2] L. Zajíček, Sets of σ-porosity and sets of σ-porosity (q), Časopis Pěst. Mat. 101 (1976), 350-359. | Zbl 0341.30026
[002] [3] L. Zajíček, Porosity and σ-porosity, Real Anal. Exchange 13 (1987-88), 314-350. | Zbl 0666.26003
[003] [4] L. Zajíček, Porosity, derived numbers and knot points of typical continuous functions, Cze- choslovak Math. J. 39 (1989), 45-52.
[004] [5] L. Zajíček, A note on σ-porous sets, Real Anal. Exchange 17 (1991-92), 18.
[005] [6] L. Zajíček, Products of non-σ-porous sets and Foran systems, Atti Sem. Mat. Fis. Univ. Modena 44 (1996), 497-505. | Zbl 0877.54023
[006] [7] T. Zamfirescu, Porosity in convexity, Real Anal. Exchange 15 (1989-90), 424-436. | Zbl 0708.52001