@article{bwmeta1.element.bwnjournal-article-cmv77z2p251bwm, author = {Tatjana Ostrogorski}, title = {Weighted norm inequalities and homogeneous cones}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {251-264}, zbl = {0910.26013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv77z2p251bwm} }
Ostrogorski, Tatjana. Weighted norm inequalities and homogeneous cones. Colloquium Mathematicae, Tome 78 (1998) pp. 251-264. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv77z2p251bwm/
[000] [1] W. Beckner, Inequalities in Fourier Analysis, Ann. of Math. 102 (1975), 159-182. | Zbl 0338.42017
[001] [2] A. Erdélyi, An extension of a Hardy-Littlewood-Pólya inequality, Proc. Edinburgh Math. Soc. 21 (1978), 11-15. | Zbl 0384.26009
[002] [3] J. Faraut and A. Koranyi, Analysis on Symmetric Cones, Oxford Univ. Press, Oxford, 1994. | Zbl 0841.43002
[003] [4] S. G. Gindikin, Analysis in homogeneous domains, Uspekhi Mat. Nauk 19 (1964), no. 4, 3-92 (in Russian). | Zbl 0144.08101
[004] [5] G. Hardy, J. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, 1952.
[005] [6] E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol. 1, Springer, 1963. | Zbl 0115.10603
[006] [7] M. Koecher, Positivitätsbereiche im , Amer. J. Math. 79 (1957), 575-596.
[007] [8] B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 44 (1972), 31-38. | Zbl 0236.26015
[008] [9] T. Ostrogorski, Analogues of Hardy’s inequality in , ibid. 88 (1988), 209-219. | Zbl 0639.42020
[009] [10] T. Ostrogorski, Homogeneous cones and Abelian theorems, Internat. J. Math. Math. Sci., to appear. | Zbl 0914.43008
[010] [11] O. Rothaus, Domains of positivity, Abh. Math. Sem. Univ. Hamburg 24 (1960), 189-235. | Zbl 0096.27903
[011] [12] Y. Sagher, M. V. Siadat and K. C. Zhou, Norm inequalities for integral operators on cones, Colloq. Math. 60/61 (1990), 77-92. | Zbl 0767.47014
[012] [13] M. V. Siadat and K. Zhou, An extension of norm inequalities for integral operators on cones when , Proc. Amer. Math. Soc. 119 (1993), 817-821. | Zbl 0796.47019
[013] [14] E. B. Vinberg, The theory of homogeneous convex cones, Trudy Moskov. Mat. Obshch. 12 (1963), 303-358 (in Russian).