@article{bwmeta1.element.bwnjournal-article-cmv77z2p245bwm, author = {Y\=uji Akaike}, title = {Homeomorphic neighborhoods in $$\mu$^{n+1}$-manifolds}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {245-250}, zbl = {0915.55005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv77z2p245bwm} }
Akaike, Yūji. Homeomorphic neighborhoods in $μ^{n+1}$-manifolds. Colloquium Mathematicae, Tome 78 (1998) pp. 245-250. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv77z2p245bwm/
[000] [1] Y. Akaike, Proper n-shape and property , Bull. Polish Acad. Sci. Math. 45 (1997), 251-261.
[001] [2] Y. Akaike, Proper n-shape and the Freudenthal compactification, Tsukuba J. Math., to appear. | Zbl 0924.54022
[002] [3] B. J. Ball and R. B. Sher, A theory of proper shape for locally compact metric spaces, Fund. Math. 86 (1974), 163-192. | Zbl 0293.54037
[003] [4] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 380 (1988). | Zbl 0645.54029
[004] [5] A. Chigogidze, Compacta lying in the n-dimensional Menger compactum and having homeomorphic complements in it, Mat. Sb. 133 (1987), 481-496 (in Russian); English transl.: Math. USSR-Sb. 61 (1988), 471-484. | Zbl 0669.54010
[005] [6] A. Chigogidze, The theory of n-shape, Uspekhi Mat. Nauk 44 (5) (1989), 117-140 (in Russian); English transl.: Russian Math. Surveys 44 (5) (1989), 145-174.
[006] [7] A. Chigogidze, Classification theorem for Menger manifolds, Proc. Amer. Math. Soc. 116 (1992), 825-832. | Zbl 0773.55005
[007] [8] A. Chigogidze, Finding a boundary for a Menger manifold, ibid. 121 (1994), 631-640. | Zbl 0838.57014
[008] [9] A. Chigogidze, K. Kawamura and E. D. Tymchatyn, Menger manifolds, in: Continua, H. Cook et al. (eds.), Lecture Notes in Pure and Appl. Math. 170, Marcel Dekker, New York, 1995, 37-88.
[009] [10] Y. Iwamoto, Infinite deficiency in Menger manifolds, Glas. Mat. Ser. III 30 (50) (1995), 311-322. | Zbl 0845.54011
[010] [11] R. B. Sher, Proper shape theory and neighborhoods of sets in Q-manifolds, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), 271-276. | Zbl 0307.55011
[011] [12] J. H. C. Whitehead, Simplicial spaces, nuclei, and m-groups, Proc. London Math. Soc. (2) 45 (1939), 243-327. | Zbl 0022.40702