Some Remarks on Rational Müntz Approximation on [0,∞)
Zhou, S.
Colloquium Mathematicae, Tome 78 (1998), p. 233-243 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210586
@article{bwmeta1.element.bwnjournal-article-cmv77z2p233bwm,
     author = {S. Zhou},
     title = {Some Remarks on Rational M\"untz Approximation on [0,$\infty$)},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {233-243},
     zbl = {0906.41014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv77z2p233bwm}
}
Zhou, S. Some Remarks on Rational Müntz Approximation on [0,∞). Colloquium Mathematicae, Tome 78 (1998) pp. 233-243. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv77z2p233bwm/

[000] [1] J. Bak and D. J. Newman, Rational combinations of xkλ, λk ≥ 0 are always dense in C[0,1], J. Approx. Theory 23 (1978), 155-157. | Zbl 0385.41007

[001] [2] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, 1966. | Zbl 0161.25202

[002] [3] G. Somorjai, A Müntz-type problem for rational approximation, Acta Math. Acad. Sci. Hungar. 27 (1976), 197-199. | Zbl 0333.41012

[003] [4] Q. Y. Zhao and S. P. Zhou, Are rational combinations of xnλ, λn ≥ 0, always dense in C[0,], Approx. Theory Appl. 13 (1997), no. 1, 10-17. | Zbl 0904.41008

[004] [5] S. P. Zhou, On Müntz rational approximation, Constr. Approx. 9 (1993), 435-444. | Zbl 0780.41010