Functions characterized by images of sets
Ciesielski, Krzysztof ; Dikrajan, Dikran ; Watson, Stephen
Colloquium Mathematicae, Tome 78 (1998), p. 211-232 / Harvested from The Polish Digital Mathematics Library

For non-empty topological spaces X and Y and arbitrary families 𝒜𝒫(X) and 𝒫(Y) we put 𝒞𝒜,=f ∈ YX : (∀ A ∈ 𝒜)(f[A] ∈ ). We examine which classes of functions YX can be represented as 𝒞𝒜,. We are mainly interested in the case when =𝒞(X,Y) is the class of all continuous functions from X into Y. We prove that for a non-discrete Tikhonov space X the class =𝒞(X,ℝ) is not equal to 𝒞𝒜, for any 𝒜𝒫(X) and 𝒫(ℝ). Thus, 𝒞(X,ℝ) cannot be characterized by images of sets. We also show that none of the following classes of real functions can be represented as 𝒞𝒜,: upper (lower) semicontinuous functions, derivatives, approximately continuous functions, Baire class 1 functions, Borel functions, and measurable functions.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210585
@article{bwmeta1.element.bwnjournal-article-cmv77z2p211bwm,
     author = {Krzysztof Ciesielski and Dikran Dikrajan and Stephen Watson},
     title = {Functions characterized by images of sets},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {211-232},
     zbl = {0909.54008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv77z2p211bwm}
}
Ciesielski, Krzysztof; Dikrajan, Dikran; Watson, Stephen. Functions characterized by images of sets. Colloquium Mathematicae, Tome 78 (1998) pp. 211-232. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv77z2p211bwm/

[000] [1] J. J. Charatonik, On chaotic curves, Colloq. Math. 41 (1979), 219-227. | Zbl 0447.54047

[001] [2] K. Ciesielski, Topologizing different classes of real functions, Canad. J. Math. 46 (1994), 1188-1207. | Zbl 0828.26011

[002] [3] H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1967), 241-249. | Zbl 0158.41503

[003] [4] R. Engelking, General Topology, PWN, Warszawa, 1977.

[004] [5] H. Herrlich, Wann sind alle stetigen Abbildungen in Y konstant?, Math. Z. 90 (1965), 152-154. | Zbl 0131.20402

[005] [6] V. Kannan and M. Rajagopalan, Construction and application of rigid spaces I, Adv. Math. 29 (1978), 1139-1172. | Zbl 0424.54028

[006] [7] W. Kulpa, Rigid graphs of maps, Ann. Math. Sil. 2 (14) (1986), 92-95. | Zbl 0593.54013

[007] [8] D. J. Velleman, Characterizing continuity, Amer. Math. Monthly 104 (1997), 318-322. | Zbl 0871.26002