@article{bwmeta1.element.bwnjournal-article-cmv77z1p97bwm, author = {A. Bia\L ynicki-Birula and J. \'Swi\k ecicka}, title = {A recipe for finding open subsets of vector spaces with a good quotient}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {97-114}, zbl = {0947.14027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv77z1p97bwm} }
BiaŁynicki-Birula, A.; Święcicka, J. A recipe for finding open subsets of vector spaces with a good quotient. Colloquium Mathematicae, Tome 78 (1998) pp. 97-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv77z1p97bwm/
[000] [BBŚw1] A. Białynicki-Birula and J. Święcicka, A reduction theorem for existence of good quotients, Amer. J. Math. 113 (1990), 189-201. | Zbl 0741.14031
[001] [BBŚw2] A. Białynicki-Birula and J. Święcicka,Open subsets in projective spaces with a good quotient by an action of a reductive group, Transformation Groups 1 (1996), 153-186. | Zbl 0912.14016
[002] [BBŚw3] A. Białynicki-Birula and J. Święcicka,Open subsets in projective spaces with a good quotient by an action of a reductive group,Three theorems on existence of good quotients, Math. Ann. 307 (1997), 143-149. | Zbl 0870.14034
[003] [BBŚw4] A. Białynicki-Birula and J. Święcicka,Open subsets in projective spaces with a good quotient by an action of a reductive group,Three theorems on existence of good quotients,A combinatorial approach to geometric invariant theory, in Proc. Sophus Lie Memorial Conf. (Oslo 1992), O. A. Laudal and B. Jahren (eds.), Scand. Univ. Press, Oslo, 115-127.
[004] [C] D. A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), 17-50. | Zbl 0846.14032
[005] [GIT] D. Mumford, Geometric Invariant Theory, Ergeb. Math. Grenzgeb. 34, Springer, 1982.
[006] [K] D. Knutson, Algebraic Spaces, Lecture Notes in Math. 203, Springer, 1971. | Zbl 0221.14001
[007] [N] M. Nagata, Note on orbit spaces, Osaka Math. J. 14 (1962), 21-31. | Zbl 0103.38303
[008] [Oda] T. Oda, Convex Bodies and Algebraic Geometry, Springer, 1985. | Zbl 0628.52002
[009] [S] C. S. Seshadri, Quotient spaces modulo reductive algebraic groups, Ann. of Math. 95 (1972), 511-556. | Zbl 0241.14024