One-parameter global bifurcation in a multiparameter problem
Welsh, Stewart
Colloquium Mathematicae, Tome 78 (1998), p. 85-96 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210578
@article{bwmeta1.element.bwnjournal-article-cmv77z1p85bwm,
     author = {Stewart Welsh},
     title = {One-parameter global bifurcation in a multiparameter problem},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {85-96},
     zbl = {0910.47056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv77z1p85bwm}
}
Welsh, Stewart. One-parameter global bifurcation in a multiparameter problem. Colloquium Mathematicae, Tome 78 (1998) pp. 85-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv77z1p85bwm/

[000] [1] Alexander, J. C. and Antman, S. S., Global and local behavior of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems, Arch. Rational Mech. Anal. 76 (1981), 339-354. | Zbl 0479.58005

[001] [2] Alexander, J. C. and Fitzpatrick, P. M., Galerkin approximations in several parameter bifurcation problems, Math. Proc. Cambridge Philos. Soc. 87 (1980), 489-500. | Zbl 0455.47047

[002] [3] Alexander, J. C. and Yorke, J. A., Global bifurcation of periodic orbits, Amer. J. Math. 100 (1978), 263-292. | Zbl 0386.34040

[003] [4] Cantrell, R. S., A homogeneity condition guaranteeing bifurcation in multiparameter nonlinear eigenvalue problems, Nonlinear Anal. 8 (1984), 159-169. | Zbl 0545.34012

[004] [5] Cantrell, Multiparameter bifurcation problems and topological degree, J. Differential Equations 52 (1984), 39-51. | Zbl 0488.47033

[005] [6] Crandall, M. G. and Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321-340. | Zbl 0219.46015

[006] [7] Esquinas, J. and López-Gómez, J., Optimal multiplicity in local bifurcation theory. I. Generalized generic eigenvalues, J. Differential Equations 71 (1988), 71-92. | Zbl 0648.34027

[007] [8] Esquinas, J. and López-Gómez, J., Optimal multiplicity in bifurcation theory. II. General case, ibid. 75 (1988), 206-215. | Zbl 0668.47043

[008] [9] Esquinas, J. and López-Gómez, J., Multiparameter bifurcation for some reaction-diffusion systems, Proc. Roy. Soc. Edinburgh Sect. A 112 (1989), 135-143. | Zbl 0727.35010

[009] [10] Fitzpatrick, P. M., Homotopy, linearization and bifurcation, Nonlinear Anal. 12 (1988), 171-184. | Zbl 0653.58028

[010] [11] Fitzpatrick, P. M., Massabó, I. and Pejsachowicz, J., Global several-parameter bifurcation and continuation theorems: a unified approach via complementing maps, Math. Ann. 263 (1983), 61-73. | Zbl 0519.58024

[011] [12] Hale, J. K., Bifurcation from simple eigenvalues for several parameter families, Nonlinear Anal. 2 (1978), 491-497. | Zbl 0383.34050

[012] [13] Ize, J., Bifurcation theory for Fredholm operators, Mem. Amer. Math. Soc. 174 (1976). | Zbl 0338.47032

[013] [14] Ize, J., Necessary and sufficient conditions for multiparameter bifurcation, Rocky Mountain J. Math. 18 (1988), 305-337. | Zbl 0652.58008

[014] [15] Ize, J., Massabó, I., Pejsachowicz, J. and Vignoli, A., Structure and dimension of global branches of solutions to multiparameter nonlinear equations, Trans. Amer. Math. Soc. 291 (1985), 383-435. | Zbl 0578.58005

[015] [16] López-Gómez, J., Multiparameter bifurcation based on the linear part, J. Math. Anal. Appl. 138 (1989), 358-370. | Zbl 0668.47042

[016] [17] Magnus, R. J., A generalization of multiplicity and the problem of bifurcation, Proc. London Math. Soc. 32 (1976), 251-278. | Zbl 0316.47042

[017] [18] Petryshyn, W. V., On projectional solvability and the Fredholm alternative for equations involving linear A-proper operators, Arch. Rational Mech. Anal. 30 (1968), 270-284. | Zbl 0176.45902

[018] [19] Petryshyn, W. V., Invariance of domain for locally A-proper mappings and its implications, J. Funct. Anal. 5 (1970), 137-159. | Zbl 0197.40501

[019] [20] Petryshyn, W. V., Stability theory for linear A-proper mappings, Proc. Math. Phys. Sect. Shevchenko Sci. Soc., 1973.

[020] [21] Petryshyn, W. V., On the approximation solvability of equations involving A-proper and pseudo A-proper mappings, Bull. Amer. Math. Soc. 81 (1975), 223-448. | Zbl 0303.47038

[021] [22] Stuart, C. A. and Toland, J. F., A global result applicable to nonlinear Steklov problems, J. Differential Equations 15 (1974), 247-268. | Zbl 0276.35037

[022] [23] Taylor, A. E. and Lay, D. C., Introduction to Functional Analysis, 2nd ed., Wiley, New York, 1980. | Zbl 0501.46003

[023] [24] Toland, J. F., Topological methods for nonlinear eigenvalue problems, Battelle Math. Report No. 77, 1973.

[024] [25] Toland, J. F., Global bifurcation theory via Galerkin's method, Nonlinear Anal. 1 (1977), 305-317. | Zbl 0477.47036

[025] [26] Welsh, S. C., Global results concerning bifurcation for Fredholm maps of index zero with a transversality condition, Nonlinear Anal. 12 (1988), 1137-1148. | Zbl 0672.47051

[026] [27] Welsh, S. C., A vector parameter global bifurcation result, ibid. 25 (1995), 1425-1435. | Zbl 0901.47041

[027] [28] Westreich, D., Bifurcation at eigenvalues of odd multiplicity, Proc. Amer. Math. Soc. 41 (1973), 609-614. | Zbl 0272.58004