Representing idempotents as a sum of two nilpotents - an approach via matrices over division rings
Salwa, Arkadiusz
Colloquium Mathematicae, Tome 78 (1998), p. 59-83 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210577
@article{bwmeta1.element.bwnjournal-article-cmv77z1p59bwm,
     author = {Arkadiusz Salwa},
     title = {Representing idempotents as a sum of two nilpotents - an approach via matrices over division rings},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {59-83},
     zbl = {0909.16026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv77z1p59bwm}
}
Salwa, Arkadiusz. Representing idempotents as a sum of two nilpotents - an approach via matrices over division rings. Colloquium Mathematicae, Tome 78 (1998) pp. 59-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv77z1p59bwm/

[000] [1] G. M. Bergman, The diamond lemma for ring theory, Adv. Math. 29 (1978), 178-218. | Zbl 0326.16019

[001] [2] L. A. Bokut', Embedding into simple associative algebras, Algebra i Logika 15 (1976), no. 2, 117-142 (in Russian).

[002] [3] M. Ferrero and E. R. Puczyłowski, On rings which are sums of two subrings, Arch. Math. (Basel) 53 (1989), 4-10. | Zbl 0645.16005

[003] [4] M. Ferrero, E. R. Puczyowski and S. Sidki, On the representation of an idempotent as a sum of nilpotent elements, Canad. Math. Bull. 39 (1996), 178-185. | Zbl 0859.16027

[004] [5] I. N. Herstein, Noncommutative Rings, Wiley, New York, 1968.

[005] [6] O. H. Kegel, Zur Nilpotenz gewisser assoziativer Ringe, Math. Ann. 149 (1962/63), 258-260. | Zbl 0106.25402

[006] [7] O. H. Kegel, On rings that are sums of two subrings, J. Algebra 1 (1964), 103-109. | Zbl 0203.04201

[007] [8] A. V. Kelarev, A sum of two locally nilpotent rings may be not nil, Arch. Math. (Basel) 60 (1993), 431-435. | Zbl 0784.16011

[008] [9] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, New York, 1987. | Zbl 0644.16008

[009] [10] A. Salwa, Structure of skew linear semigroups, Internat. J. Algebra Comput. 3 (1993), 101-113. | Zbl 0779.20039

[010] [11] A. Salwa, Rings that are sums of two locally nilpotent subrings, Comm. Algebra 24 (1996), 3921-3931. | Zbl 0878.16012

[011] [12] L. W. Small, J. T. Stafford and R. B. Warfield, Affine algebras of Gelfand-Kirillov dimension one are PI, Math. Proc. Cambridge Philos. Soc. 97 (1985), 407-414. | Zbl 0561.16005