@article{bwmeta1.element.bwnjournal-article-cmv77z1p59bwm, author = {Arkadiusz Salwa}, title = {Representing idempotents as a sum of two nilpotents - an approach via matrices over division rings}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {59-83}, zbl = {0909.16026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv77z1p59bwm} }
Salwa, Arkadiusz. Representing idempotents as a sum of two nilpotents - an approach via matrices over division rings. Colloquium Mathematicae, Tome 78 (1998) pp. 59-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv77z1p59bwm/
[000] [1] G. M. Bergman, The diamond lemma for ring theory, Adv. Math. 29 (1978), 178-218. | Zbl 0326.16019
[001] [2] L. A. Bokut', Embedding into simple associative algebras, Algebra i Logika 15 (1976), no. 2, 117-142 (in Russian).
[002] [3] M. Ferrero and E. R. Puczyłowski, On rings which are sums of two subrings, Arch. Math. (Basel) 53 (1989), 4-10. | Zbl 0645.16005
[003] [4] M. Ferrero, E. R. Puczyowski and S. Sidki, On the representation of an idempotent as a sum of nilpotent elements, Canad. Math. Bull. 39 (1996), 178-185. | Zbl 0859.16027
[004] [5] I. N. Herstein, Noncommutative Rings, Wiley, New York, 1968.
[005] [6] O. H. Kegel, Zur Nilpotenz gewisser assoziativer Ringe, Math. Ann. 149 (1962/63), 258-260. | Zbl 0106.25402
[006] [7] O. H. Kegel, On rings that are sums of two subrings, J. Algebra 1 (1964), 103-109. | Zbl 0203.04201
[007] [8] A. V. Kelarev, A sum of two locally nilpotent rings may be not nil, Arch. Math. (Basel) 60 (1993), 431-435. | Zbl 0784.16011
[008] [9] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, New York, 1987. | Zbl 0644.16008
[009] [10] A. Salwa, Structure of skew linear semigroups, Internat. J. Algebra Comput. 3 (1993), 101-113. | Zbl 0779.20039
[010] [11] A. Salwa, Rings that are sums of two locally nilpotent subrings, Comm. Algebra 24 (1996), 3921-3931. | Zbl 0878.16012
[011] [12] L. W. Small, J. T. Stafford and R. B. Warfield, Affine algebras of Gelfand-Kirillov dimension one are PI, Math. Proc. Cambridge Philos. Soc. 97 (1985), 407-414. | Zbl 0561.16005