We show that any finitely generated variety V of double Heyting algebras is finitely determined, meaning that for some finite cardinal n(V), any class ⊆ V consisting of algebras with pairwise isomorphic endomorphism monoids has fewer than n(V) pairwise non-isomorphic members. This result complements the earlier established fact of categorical universality of the variety of all double Heyting algebras, and contrasts with categorical results concerning finitely generated varieties of distributive double p-algebras.
@article{bwmeta1.element.bwnjournal-article-cmv77z1p41bwm, author = {V. Koubek and J. Sichler}, title = {Equimorphy in varieties of double Heyting algebras}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {41-58}, zbl = {0908.06006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv77z1p41bwm} }
Koubek, V.; Sichler, J. Equimorphy in varieties of double Heyting algebras. Colloquium Mathematicae, Tome 78 (1998) pp. 41-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv77z1p41bwm/
[000] [1] M. E. Adams, V. Koubek and J. Sichler, Homomorphisms and endomorphisms in varieties of pseudocomplemented distributive lattices (with applications to Heyting algebras), Trans. Amer. Math. Soc. 285 (1984), 57-79. | Zbl 0523.06015
[001] [2] V. Koubek and H. Radovanská, Algebras determined by their endomorphism monoids, Cahiers Topologie Géom. Différentielle Catégoriques 35 (1994), 187-225. | Zbl 0820.08002
[002] [3] V. Koubek and J. Sichler, Categorical universality of regular distributive double -algebras, Glasgow Math. J. 32 (1990), 329-340. | Zbl 0714.18002
[003] [4] ---, ---, Priestley duals of products, Cahiers Topologie Géom. Différentielle Catégoriques 32 (1991), 243-256.
[004] [5] —, —, Finitely generated universal varieties of distributive double -algebras, ibid. 35 (1994), 139-164. | Zbl 0905.06008
[005] [6] ---, ---, Equimorphy in varieties of distributive double p-algebras, Czechoslovak Math. J., to appear. | Zbl 0952.06013
[006] [7] K. D. Magill, The semigroup of endomorphisms of a Boolean ring, Semigroup Forum 4 (1972), 411-416.
[007] [8] C. J. Maxson, On semigroups of Boolean ring endomorphisms, ibid., 78-82. | Zbl 0262.06011
[008] [9] R. McKenzie and C. Tsinakis, On recovering a bounded distributive lattice from its endomorphism monoid, Houston J. Math. 7 (1981), 525-529. | Zbl 0492.06009
[009] [10] H. A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190. | Zbl 0201.01802
[010] [11] ---, Ordered sets and duality for distributive lattices, Ann. Discrete Math. 23 (1984), 36-60.
[011] [12] A. Pultr and V. Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North-Holland, Amsterdam, 1980.
[012] [13] B. M. Schein, Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups, Fund. Math. 68 (1970), 31-50. | Zbl 0197.28902