A relatively free topological group that is not varietal free
Pestov, Vladimir ; Shakhmatov, Dmitri
Colloquium Mathematicae, Tome 78 (1998), p. 1-8 / Harvested from The Polish Digital Mathematics Library

Answering a 1982 question of Sidney A. Morris, we construct a topological group G and a subspace X such that (i) G is algebraically free over X, (ii) G is relatively free over X, that is, every continuous mapping from X to G extends to a unique continuous endomorphism of G, and (iii) G is not a varietal free topological group on X in any variety of topological groups.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210574
@article{bwmeta1.element.bwnjournal-article-cmv77z1p1bwm,
     author = {Vladimir Pestov and Dmitri Shakhmatov},
     title = {A relatively free topological group that is not varietal free},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {1-8},
     zbl = {0901.22002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv77z1p1bwm}
}
Pestov, Vladimir; Shakhmatov, Dmitri. A relatively free topological group that is not varietal free. Colloquium Mathematicae, Tome 78 (1998) pp. 1-8. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv77z1p1bwm/

[000] [1] A. V. Arhangel'skiĭ [A. V. Arkhangel'skiĭ], Any topological group is a quotient group of a zero-dimensional topological group, Soviet. Math. Dokl. 23 (1981), 615-618.

[001] [2] A. V. Arhangel'skiĭ [A. V. Arkhangel'skiĭ], Classes of topological groups, Russian Math. Surveys 36 (1981), 151-174.

[002] [3] M. S. Brooks, S. A. Morris and S. A. Saxon, Generating varieties of topological groups, Proc. Edinburgh Math. Soc. 18 (1973), 191-197. | Zbl 0263.22002

[003] [4] W. W. Comfort and J. van Mill, On the existence of free topological groups, Topology Appl. 29 (1988), 245-265.

[004] [5] R. Engelking, General Topology, PWN, Warszawa, 1977.

[005] [6] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, 2nd ed. Springer, 1979. | Zbl 0416.43001

[006] [7] K. H. Hofmann, An essay on free compact groups, in: Lecture Notes in Math. 915, Springer, 1982, 171-197.

[007] [8] H. J. K. Junnila, Stratifiable pre-images of topological spaces, in: Topology (Budapest 1978), Colloq. Math. Soc. János Bolyai 23, North-Holland, 1980, 689-703.

[008] [9] S. Mac Lane, Categories for the Working Mathematician, Grad. Texts in Math. 5, Springer, 1971.

[009] [10] A. A. Markov, On free topological groups, Dokl. Akad. Nauk SSSR 31 (1941), 299-301 (in Russian).

[010] [11] A. A. Markov, Three papers on topological groups, Amer. Math. Soc. Transl. 30 (1950), 120 pp.

[011] [12] S. A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145-160. | Zbl 0172.31404

[012] [13] S. A. Morris, Varieties of topological groups and left adjoint functor, J. Austral. Math. Soc. 16 (1973), 220-227. | Zbl 0274.22003

[013] [14] S. A. Morris, Varieties of topological groups. A survey, Colloq. Math. 46 (1982), 147-165. | Zbl 0501.22002

[014] [15] S. A. Morris, Free abelian topological groups, in: Categorical Topology (Toledo, Ohio, 1983), Heldermann, 1984, 375-391.

[015] [16] H. Neumann, Varieties of Groups, Ergeb. Math. Grenzgeb. 37, Springer, Berlin, 1967. | Zbl 0149.26704

[016] [17] V. G. Pestov, Neighbourhoods of unity in free topological groups, Moscow Univ. Math. Bull. 40 (1985), 8-12. | Zbl 0592.22002

[017] [18] V. G. Pestov, Universal arrows to forgetful functors from categories of topological algebra, Bull. Austral. Math. Soc. 48 (1993), 209-249. | Zbl 0784.18002

[018] [19] P. Samuel, On universal mappings and free topological groups, Bull. Amer. Math. Soc. 54 (1948), 591-598. | Zbl 0031.41702

[019] [20] D. B. Shakhmatov, Zerodimensionality of free topological groups and topological groups with noncoinciding dimensions, Bull. Polish Acad. Sci. Math. 37 (1989), 497-506. | Zbl 0759.54023

[020] [21] D. B. Shakhmatov, Imbeddings into topological groups preserving dimensions, Topology Appl. 36 (1990), 181-204. | Zbl 0709.22001