Strong asymptotic stability for n-dimensional thermoelasticity systems
Aassila, Mohammed
Colloquium Mathematicae, Tome 78 (1998), p. 133-139 / Harvested from The Polish Digital Mathematics Library

We use a new approach to prove the strong asymptotic stability for n-dimensional thermoelasticity systems. Unlike the earlier works, our method can be applied in the case of feedbacks with no growth assumption at the origin, and when LaSalle's invariance principle cannot be applied due to the lack of compactness.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210571
@article{bwmeta1.element.bwnjournal-article-cmv77z1p133bwm,
     author = {Mohammed Aassila},
     title = {Strong asymptotic stability for n-dimensional thermoelasticity systems},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {133-139},
     zbl = {0958.35012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv77z1p133bwm}
}
Aassila, Mohammed. Strong asymptotic stability for n-dimensional thermoelasticity systems. Colloquium Mathematicae, Tome 78 (1998) pp. 133-139. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv77z1p133bwm/

[000] [1] Aassila M., Nouvelle approche à la stabilisation forte des systèmes distribués, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), 43-48.

[001] [2] Aassila M. , A new approach to strong stabilization of distributed systems, Differential Integral Equations, to appear.

[002] [3] Aassila M. , Strong asymptotic stability of isotropic elasticity systems with internal damping, Acta Sci. Math. (Szeged) 64 (1998), 3-8. | Zbl 0907.35016

[003] [4] Ball J. M., On the asymptotic behavior of generalized processes with applications to nonlinear evolution equations, J. Differential Equations 27 (1978), 224-265. | Zbl 0376.35002

[004] [5] Dafermos C. M., On the existence and asymptotic stability of solutions of the equations of linear thermoelasticity, Arch. Rational Mech. Anal. 29 (1968), 241-271. | Zbl 0183.37701

[005] [6] R. Dautray et J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 1, Masson, 1987. | Zbl 0708.35003

[006] [7] Muñoz Rivera J. E., Energy decay rates in linear thermoelasticity, Funkcial. Ekvac. 35 (1992), 19-30. | Zbl 0838.73006

[007] [11] Ouazza M., Estimation d'énergie et résultats de contrôlabilité pour certains systèmes couplés, PhD thesis, Université de Strasbourg, June 1996.

[008] [12] Slemrod M., Global existence, uniqueness and asymptotic stability of classical smooth solutions in one dimensional nonlinear thermoelasticity, Arch. Rational Mech. Anal. 76 (1981), 97-133. | Zbl 0481.73009