Congruence lattices of free lattices in non-distributive varieties
Ploščica, Miroslav ; Tůma, Jiří ; Wehrung, Friedrich
Colloquium Mathematicae, Tome 78 (1998), p. 269-278 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210565
@article{bwmeta1.element.bwnjournal-article-cmv76z2p269bwm,
     author = {Miroslav Plo\v s\v cica and Ji\v r\'\i\ T\r uma and Friedrich Wehrung},
     title = {Congruence lattices of free lattices in non-distributive varieties},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {269-278},
     zbl = {0904.06005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv76z2p269bwm}
}
Ploščica, Miroslav; Tůma, Jiří; Wehrung, Friedrich. Congruence lattices of free lattices in non-distributive varieties. Colloquium Mathematicae, Tome 78 (1998) pp. 269-278. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv76z2p269bwm/

[000] [1] G. M. Bergman, Von Neumann regular rings with tailor-made ideal lattices, unpublished notes, October 1986.

[001] [2] G. Grätzer, General Lattice Theory, Pure and Appl. Math. 75, Academic Press, New York; Lehrbücher Monograph. Gebiete Exakt. Wiss. Math. Reihe 52, Birkhäuser, Basel, 1978.

[002] [3] G. Grätzer and E. T. Schmidt, On congruence lattices of lattices, Acta Math. Acad. Sci. Hungar. 13 (1962), 179-185. | Zbl 0101.02103

[003] [4] G. Grätzer and E. T. Schmidt, Congruence-preserving extensions of finite lattices to sectionally complemented lattices, Proc. Amer. Math. Soc., to appear. | Zbl 0923.06003

[004] [5] K. Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951), 14-17. | Zbl 0044.27302

[005] [6] E. T. Schmidt, Zur Charakterisierung der Kongruenzverbände der Verbände, Mat. Časopis Sloven. Akad. Vied 18 (1968), 3-20. | Zbl 0155.35102

[006] [7] M. Tischendorf, On the representation of distributive semilattices, Algebra Universalis 31 (1994), 446-455. | Zbl 0794.06003

[007] [8] F. Wehrung, Non-measurability properties of interpolation vector spaces, Israel J. Math., to appear.

[008] [9] F. Wehrung, A uniform refinement property of certain congruence lattices, Proc. Amer. Math. Soc., to appear.