The Grothendieck group of GL(F)×GL(G)-equivariant modules over the coordinate ring of determinantal varieties
Weyman, J.
Colloquium Mathematicae, Tome 78 (1998), p. 243-263 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210563
@article{bwmeta1.element.bwnjournal-article-cmv76z2p243bwm,
     author = {J. Weyman},
     title = {The Grothendieck group of GL(F)$\times$GL(G)-equivariant modules over the coordinate ring of determinantal varieties},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {243-263},
     zbl = {0945.13006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv76z2p243bwm}
}
Weyman, J. The Grothendieck group of GL(F)×GL(G)-equivariant modules over the coordinate ring of determinantal varieties. Colloquium Mathematicae, Tome 78 (1998) pp. 243-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv76z2p243bwm/

[000] [A] K. Akin, On complexes relating Jacobi-Trudi identity with the Bernstein-Gelfand-Gelfand resolution, J. Algebra 117 (1988), 494-503. | Zbl 0668.20033

[001] [A-B-W] K. Akin, D. A. Buchsbaum and J. Weyman, Resolutions of determinantal ideals; the submaximal minors, Adv. Math. 39 (1981), 1-30. | Zbl 0474.14035

[002] [Ar] M. Artale, Syzygies of a certain family of generically imperfect modules, J. Algebra 167 (1994), 233-257. | Zbl 0809.13007

[003] [Bo] G. Boffi, The universal form of the Littlewood-Richardson rule, Adv. Math. 68 (1988), 40-63. | Zbl 0659.20035

[004] [B] D. Buchsbaum, Complexes associated with the minors of a matrix, Sympos. Math. 4 (1970), 255-283.

[005] [B-E] D. Buchsbaum and D. Eisenbud, Generic free resolutions and a family of generically perfect ideals, Adv. Math. 18 (1975), 245-301. | Zbl 0336.13007

[006] [D] S. Donkin, Rational Representations of Algebraic Groups, Lecture Notes in Math. 1140, Springer, Berlin, 1985. | Zbl 0586.20017

[007] [J] J. Jantzen, Representations of Algebraic Groups, Pure and Appl. Math. 131, Academic Press, Boston, 1987.

[008] [MD] I. G. MacDonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford, 1979. | Zbl 0487.20007

[009] [L] A. Lascoux, Syzygies des variétés déterminantales, Adv. Math. 30 (1978), 202-237. | Zbl 0394.14022

[010] [W] H. Weyl, The Classical Groups, Princeton Univ. Press, 1973 (8th edition).

[011] [Z] A. Zelevinsky, Resolvents, dual pairs and character formulas, Funktsional. Anal. i Prilozhen. 21 (2) (1987), 74-75 (in Russian).