@article{bwmeta1.element.bwnjournal-article-cmv76z2p201bwm, author = {G. Sampson}, title = {$L^2$ Estimates for Oscillatory Integrals}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {201-211}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv76z2p201bwm} }
Sampson, G. $L^2$ Estimates for Oscillatory Integrals. Colloquium Mathematicae, Tome 78 (1998) pp. 201-211. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv76z2p201bwm/
[000] [1] Y. Pan and G. Sampson, The complete mapping properties for a class of oscillatory integrals, J. Fourier Anal. Appl., to appear. | Zbl 0911.42008
[001] [2] Y. Pan, G. Sampson and P. Szeptycki, and estimates for oscillatory integrals and their extended domains, Studia Math. 122 (1997), 201-224.
[002] [3] G. Sampson, Oscillatory kernels that map into , Ark. Mat. 18 (1980), 125-140. | Zbl 0473.42013
[003] [4] I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. 140 (1911), 1-28. | Zbl 42.0367.01