Periodic Lipα functions with Lipβ difference functions
Keleti, Tamás
Colloquium Mathematicae, Tome 78 (1998), p. 99-103 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210555
@article{bwmeta1.element.bwnjournal-article-cmv76z1p99bwm,
     author = {Tam\'as Keleti},
     title = {Periodic $Lip^$\alpha$$ functions with $Lip^$\beta$$ difference functions},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {99-103},
     zbl = {0896.26005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv76z1p99bwm}
}
Keleti, Tamás. Periodic $Lip^α$ functions with $Lip^β$ difference functions. Colloquium Mathematicae, Tome 78 (1998) pp. 99-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv76z1p99bwm/

[000] [1] M. Balcerzak, Z. Buczolich and M. Laczkovich, Lipschitz differences and Lipschitz functions, Colloq. Math. 72 (1997), 319-324. | Zbl 0877.26004

[001] [2] N. K. Bary, Trigonometric Series, Moscow, 1961 (in Russian); English transl.: A Treatise on Trigonometric Series, Macmillan, New York, 1964.

[002] [3] Z. Bukovská, Thin sets in trigonometrical series and quasinormal convergence, Math. Slovaca 40 (1990), 53-62. | Zbl 0733.43003

[003] [4] L. Bukovský, N. N. Kholshchevnikova and M. Repický, Thin sets of harmonic analysis and infinite combinatorics, Real Anal. Exchange 20 (1994-1995), 454-509. | Zbl 0835.42001

[004] [5] S. Kahane, Antistable classes of thin sets in harmonic analysis, Illinois J. Math. 37 (1993), 186-223. | Zbl 0793.42003

[005] [6] T. Keleti, Difference functions of periodic measurable functions, PhD thesis, Eötvös Loránd University, Budapest, 1996 (http://www.cs.elte.hu/phd_th/). | Zbl 0910.28003

[006] [7] T. Keleti, Difference functions of periodic measurable functions, submitted. | Zbl 0910.28003

[007] [8] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Differentiations and Some Applications, Science and Technology, Minsk, 1987 (in Russian).

[008] [9] Z A. Zygmund, Trigonometric Series, Vols. I-II, Cambridge Univ. Press, 1959.