Let be the graph of the function defined by with 1< and let the measure on induced by the Euclidean area measure on S. In this paper we characterize the set of pairs (p,q) such that the convolution operator with is - bounded.
@article{bwmeta1.element.bwnjournal-article-cmv76z1p35bwm, author = {E. Ferreyra and T. Godoy and M. Urciuolo}, title = {Endpoint bounds for convolution operators with singular measures}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {35-47}, zbl = {0915.42009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv76z1p35bwm} }
Ferreyra, E.; Godoy, T.; Urciuolo, M. Endpoint bounds for convolution operators with singular measures. Colloquium Mathematicae, Tome 78 (1998) pp. 35-47. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv76z1p35bwm/
[000] [B-S] Bennett C. and Sharpley R., Interpolation of Operators, Pure and Appl. Math. 129, Academic Press, 1988. | Zbl 0647.46057
[001] [C] Christ M., Endpoint bounds for singular fractional integral operators, UCLA preprint, 1988.
[002] [F-G-U] Ferreyra E., Godoy T. and Urciuolo M., - estimates for convolution operators with -dimensional singular measures, J. Fourier Anal. Appl., to appear.
[003] [O] Oberlin D., Convolution estimates for some measures on curves, Proc. Amer. Math. Soc. 99 (1987), 56-60. | Zbl 0613.43002
[004] [R-S] Ricci F. and Stein E.M., Harmonic analysis on nilpotent groups and singular integrals. III, Fractional integration along manifolds, J. Funct. Anal. 86 (1989), 360-389. | Zbl 0684.22006
[005] [S] Stein E.M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970. | Zbl 0207.13501
[006] [St] Stein E.M. , Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
[007] [S-W] Stein E. and Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.