Loading [MathJax]/extensions/MathZoom.js
Endpoint bounds for convolution operators with singular measures
Ferreyra, E. ; Godoy, T. ; Urciuolo, M.
Colloquium Mathematicae, Tome 78 (1998), p. 35-47 / Harvested from The Polish Digital Mathematics Library

Let Sn+1 be the graph of the function ϕ:[-1,1]n defined by ϕ(x1,,xn)=j=1n|xj|βj, with 1<β1βn, and let μ the measure on n+1 induced by the Euclidean area measure on S. In this paper we characterize the set of pairs (p,q) such that the convolution operator with μ is Lp-Lq bounded.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210551
@article{bwmeta1.element.bwnjournal-article-cmv76z1p35bwm,
     author = {E. Ferreyra and T. Godoy and M. Urciuolo},
     title = {Endpoint bounds for convolution operators with singular measures},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {35-47},
     zbl = {0915.42009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv76z1p35bwm}
}
Ferreyra, E.; Godoy, T.; Urciuolo, M. Endpoint bounds for convolution operators with singular measures. Colloquium Mathematicae, Tome 78 (1998) pp. 35-47. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv76z1p35bwm/

[000] [B-S] Bennett C. and Sharpley R., Interpolation of Operators, Pure and Appl. Math. 129, Academic Press, 1988. | Zbl 0647.46057

[001] [C] Christ M., Endpoint bounds for singular fractional integral operators, UCLA preprint, 1988.

[002] [F-G-U] Ferreyra E., Godoy T. and Urciuolo M., Lp-Lq estimates for convolution operators with n-dimensional singular measures, J. Fourier Anal. Appl., to appear.

[003] [O] Oberlin D., Convolution estimates for some measures on curves, Proc. Amer. Math. Soc. 99 (1987), 56-60. | Zbl 0613.43002

[004] [R-S] Ricci F. and Stein E.M., Harmonic analysis on nilpotent groups and singular integrals. III, Fractional integration along manifolds, J. Funct. Anal. 86 (1989), 360-389. | Zbl 0684.22006

[005] [S] Stein E.M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970. | Zbl 0207.13501

[006] [St] Stein E.M. , Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.

[007] [S-W] Stein E. and Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.