A note on the diophantine equation k2-1=qn+1
Le, Maohua
Colloquium Mathematicae, Tome 78 (1998), p. 31-34 / Harvested from The Polish Digital Mathematics Library

In this note we prove that the equation k2-1=qn+1, q2,n3, has only finitely many positive integer solutions (k,q,n). Moreover, all solutions (k,q,n) satisfy k1010182, q1010165 and n2·1017.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210550
@article{bwmeta1.element.bwnjournal-article-cmv76z1p31bwm,
     author = {Maohua Le},
     title = {A note on the diophantine equation ${k\atopwithdelims ()2}-1=q^n+1$
            },
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {31-34},
     zbl = {0909.11012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv76z1p31bwm}
}
Le, Maohua. A note on the diophantine equation ${k\atopwithdelims ()2}-1=q^n+1$
            . Colloquium Mathematicae, Tome 78 (1998) pp. 31-34. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv76z1p31bwm/

[000] [1] R. Alter, On the non-existence of perfect double Hamming-error-correcting codes on q=8 and q=9 symbols, Inform. and Control 13 (1968), 619-627. | Zbl 0165.22101

[001] [2] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. | Zbl 0788.11026

[002] [3] C. Hering, A remark on two diophantine equations of Peter Cameron, in: Groups, Combinatorics and Geometry (Durham, 1990), London Math. Soc. Lecture Note Ser. 165, Cambridge Univ. Press, Cambridge, 1992, 448-458.

[003] [4] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equation, Cambridge Tracts in Math. 87, Cambridge Univ. Press, Cambridge, 1986. | Zbl 0606.10011