In this note we prove that the equation , , has only finitely many positive integer solutions . Moreover, all solutions satisfy , and .
@article{bwmeta1.element.bwnjournal-article-cmv76z1p31bwm, author = {Maohua Le}, title = {A note on the diophantine equation ${k\atopwithdelims ()2}-1=q^n+1$ }, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {31-34}, zbl = {0909.11012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv76z1p31bwm} }
Le, Maohua. A note on the diophantine equation ${k\atopwithdelims ()2}-1=q^n+1$ . Colloquium Mathematicae, Tome 78 (1998) pp. 31-34. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv76z1p31bwm/
[000] [1] R. Alter, On the non-existence of perfect double Hamming-error-correcting codes on q=8 and q=9 symbols, Inform. and Control 13 (1968), 619-627. | Zbl 0165.22101
[001] [2] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. | Zbl 0788.11026
[002] [3] C. Hering, A remark on two diophantine equations of Peter Cameron, in: Groups, Combinatorics and Geometry (Durham, 1990), London Math. Soc. Lecture Note Ser. 165, Cambridge Univ. Press, Cambridge, 1992, 448-458.
[003] [4] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equation, Cambridge Tracts in Math. 87, Cambridge Univ. Press, Cambridge, 1986. | Zbl 0606.10011