Some new properties of the stationary sets (defined by G. Pisier in [12]) are studied. Some arithmetical conditions are given, leading to the non-stationarity of the prime numbers. It is shown that any stationary set is a set of continuity. Some examples of "large" stationary sets are given, which are not sets of uniform convergence.
@article{bwmeta1.element.bwnjournal-article-cmv76z1p1bwm, author = {Pascal Lefevre}, title = {On some properties of the class of stationary sets}, journal = {Colloquium Mathematicae}, volume = {78}, year = {1998}, pages = {1-18}, zbl = {0916.43005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv76z1p1bwm} }
Lefevre, Pascal. On some properties of the class of stationary sets. Colloquium Mathematicae, Tome 78 (1998) pp. 1-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv76z1p1bwm/
[000] [1] B R. Blei, Sidon partitions and p-Sidon sets, Pacific J. Math 65 (1976), 307-313. | Zbl 0335.43008
[001] [2] J. Bourgain, Une remarque sur les ensembles stationnaires, Publ. Math. Orsay, exp. 2 (1981-82). | Zbl 0527.60010
[002] [3] M. Bożejko and T. Pytlik, Some types of lacunary Fourier series, Colloq. Math. 25 (1972), 117-124. | Zbl 0249.43013
[003] [4] M. Dechamps-Gondim, Sur les compacts associés aux ensembles lacunaires, les ensembles de Sidon et quelques problèmes ouverts, Publ. Math. Orsay 84-01 (1984). | Zbl 0537.43018
[004] [5] F J. J. F. Fournier, Two UC-sets whose union is not a UC set, Proc. Amer. Math. Soc. 84 (1982), 69-72. | Zbl 0511.43003
[005] [6] J. J. F. Fournier and L. Pigno, Analytic and arithmetic properties of thin sets, Pacific J. Math. 105 (1983), 115-141. | Zbl 0491.43006
[006] [7] K J. P. Kahane, Some Random Series of Functions, Cambridge Stud. Adv. Math. 5, Cambridge Univ. Press, 1985.
[007] [8] L P. Lefevre, Sur les ensembles de convergence uniforme, Publ. Math. Orsay 94-24 (1994).
[008] [9] J. M. López and K. A. Ross, Sidon Sets, Lecture Notes in Pure Appl. Math. 13, Marcel Dekker, New York, 1975.
[009] [10] M. B. Marcus and G. Pisier, Random Fourier Series with Application to Harmonic Analysis, Ann. of Math. Stud. 101, Princeton Univ. Press, 1981. | Zbl 0474.43004
[010] [11] M I. M. Miheev, Trigonometric series with gaps, Analysis Math. 9 (1983), 43-55. | Zbl 0544.10062
[011] [12] G. Pisier, Sur l'espace de Banach des séries de Fourier aléatoires presque sûrement continues, Sem. Géométrie des Espaces de Banach, Ecole Polytechnique, 1977-78.
[012] [13] G. Pisier, De nouvelles caractérisations des ensembles de Sidon, in: Mathematical Analysis and Applications, Adv. in Math. Suppl. Stud. 7B, Academic Press, 1981, 685-726.
[013] [14] R. Salem and A. Zygmund, Some properties of trigonometric series whose terms have random signs, Acta Math. 91 (1954), 245-301. | Zbl 0056.29001