Norm estimates of discrete Schrödinger operators
Szwarc, Ryszard
Colloquium Mathematicae, Tome 78 (1998), p. 153-160 / Harvested from The Polish Digital Mathematics Library

Harper’s operator is defined on 2(Z) by Hθξ(n)=ξ(n+1)+ξ(n-1)+2cosnθξ(n), where θ[0,π]. We show that the norm of Hθ is less than or equal to 22 for π/2θπ. This solves a conjecture stated in [1]. A general formula for estimating the norm of self-adjoint tridiagonal infinite matrices is also derived.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:210547
@article{bwmeta1.element.bwnjournal-article-cmv76z1p153bwm,
     author = {Ryszard Szwarc},
     title = {Norm estimates of discrete Schr\"odinger operators},
     journal = {Colloquium Mathematicae},
     volume = {78},
     year = {1998},
     pages = {153-160},
     zbl = {0904.47025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv76z1p153bwm}
}
Szwarc, Ryszard. Norm estimates of discrete Schrödinger operators. Colloquium Mathematicae, Tome 78 (1998) pp. 153-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv76z1p153bwm/

[000] [1] C. Béguin, A. Valette and A. Żuk, z On the spectrum of a random walk on the discrete Heisenberg group and the norm of Harper's operator, J. Geom. Phys. 21 (1997), 337-356. | Zbl 0871.60053

[001] [2] T. Chihara, z An Introduction to Orthogonal Polynomials, Math. Appl. 13, Gordon and Breach, New York, 1978. | Zbl 0389.33008

[002] [3] P. R. Halmos and V. S. Sunder, z Bounded Integral Operators on L2 Spaces, Springer, Berlin, 1978. | Zbl 0389.47001

[003] [4] P. Lancaster, z Theory of Matrices, Academic Press, New York, 1969. | Zbl 0186.05301